期刊文献+
共找到19,406篇文章
< 1 2 250 >
每页显示 20 50 100
Changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children
1
作者 张宏家 《外科研究与新技术》 2003年第2期111-111,共1页
Objective The purpose of this study is to investgate changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children. Methods From June, 1999 to May,2000,45 children (30 ... Objective The purpose of this study is to investgate changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children. Methods From June, 1999 to May,2000,45 children (30 male, 15 female) undergoing correction of cardiac defects were divided into three groups randomly: group Ⅰ no myocardial ischemia,group Ⅱ myocardial ischemia less than 60 minutes, group Ⅲmyocardial ischemia 】 60 minutes. There were no significant differences in the three groups in age, sex ratio, C/T ratio, or left ventricular function. Blood samples for analysis were collected before skin incision and at time intervals up to 6 days postoperatively. Analysis of creatine kinase MB.LDH and cardiac-specific troponin I was used for the detection of myocardial damage. Meantime, the ECG was checked for myocardial infarction. After the reperfusion, myocardial tissue was obtained from the free wall of right ventricle myocardial structure studies. Results The level of cTnI was increased 展开更多
关键词 in of Changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children
下载PDF
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis
2
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury 被引量:1
3
作者 Yang Li Miaomiao Zhang +5 位作者 Shiyi Li Longlong Zhang Jisu Kim Qiujun Qiu Weigen Lu Jianxin Wang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第2期76-93,共18页
Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the pre... Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier(BBB),which affects the intracerebral delivery of drugs.Ginkgolide B(GB),a major bioactive component in commercially available products of Ginkgo biloba,has been shown significance in CI/RI treatment by regulating inflammatory pathways,oxidative damage,and metabolic disturbance,and seems to be a candidate for stroke recovery.However,limited by its poor hydrophilicity and lipophilicity,the development of GB preparations with good solubility,stability,and the ability to cross the BBB remains a challenge.Herein,we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid(DHA)to obtain a covalent complex GB-DHA,which can not only enhance the pharmacological effect of GB,but can also be encapsulated in liposomes stably.The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion(MCAO)rats.Compared to the marketed ginkgolide injection,Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion.Low levels of reactive oxygen species(ROS)and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment,while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype,which modulate neuroinflammatory and angiogenesis.In addition,Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway.Thus,transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects. 展开更多
关键词 Ginkgolide B Cerebral ischemia reperfusion injury(CI/RI) Docosahexaenoic acid Liposomes Brain targeting MICROGLIA
下载PDF
The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice
4
作者 Bo Zhao Mei Li +6 位作者 Bingyu Li Yanan Li Qianni Shen Jiabao Hou Yang Wu Lijuan Gu Wenwei Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2019-2026,共8页
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of... Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway. 展开更多
关键词 brain C1q/tumor necrosis factor-related protein-6 cerebral apoptosis diabetes inflammation ischemia/reperfusion injury NEURON NEUROPROTECTION oxidative damage Sirt1
下载PDF
N-acetylserotonin alleviates retinal ischemia-reperfusion injury via HMGB1/RAGE/NF-κB pathway in rats
5
作者 Yu-Ze Zhao Xue-Ning Zhang +7 位作者 Yi Yin Pei-Lun Xiao Meng Gao Lu-Ming Zhang Shuan-Hu Zhou Shu-Na Yu Xiao-Li Wang Yan-Song Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第2期228-238,共11页
AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for a... AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease. 展开更多
关键词 retinal diseases retinal ischemia—reperfusion injury N-ACETYLSEROTONIN high mobility group box 1 receptor for advanced glycation end-products nuclear factor-κB RATS
原文传递
Homer1a reduces inflammatory response after retinal ischemia/reperfusion injury
6
作者 Yanan Dou Xiaowei Fei +7 位作者 Xin He Yu Huan Jialiang Wei Xiuquan Wu Weihao Lyu Zhou Fei Xia Li Fei Fei 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1608-1617,共10页
Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in ... Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in neuroinflammation in the cerebrum.However,the effects of Homerla on NLRP3inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown.In our study,animal models we re constructed using C57BL/6J and Homer1^(flox/-)/Homerla^(+/-)/Nestin-Cre^(+/-)mice with elevated IOP-induced retinal ischemia/repe rfusion injury.For in vitro expe riments,the oxygen-glucose deprivation/repe rfusion injury model was constructed with M uller cells.We found that Homerla ove rexpression amelio rated the decreases in retinal thickness and Muller cell viability after ischemia/reperfusion injury.Furthermore,Homerla knockdown promoted NF-κB P65^(Ser536)activation via caspase-8,NF-κB P65 nuclear translocation,NLRP3 inflammasome formation,and the production and processing of interleukin-1βand inte rleukin-18.The opposite results we re observed with Homerla ove rexpression.Finally,the combined administration of Homerla protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1^(flox/-)Homer1a^(+/-)/Nestin-Cre^(+/-)mice and apoptosis in M uller cells after ischemia/reperfusion injury.Taken together,these studies demonstrate that Homer1a exerts protective effects on retinal tissue and M uller cells via the caspase-8/NF-KB P65/NLRP3 pathway after I/R injury. 展开更多
关键词 CASPASE-8 Homer1a INTERLEUKIN-18 INTERLEUKIN-1Β intraocular pressure ischemia/reperfusion injury JSH-23 Müller cells NLRP3 nuclear factor-kB p65 RETINA
下载PDF
The miR-9-5p/CXCL11 pathway is a key target of hydrogen sulfide-mediated inhibition of neuroinflammation in hypoxic ischemic brain injury
7
作者 Yijing Zhao Tong Li +6 位作者 Zige Jiang Chengcheng Gai Shuwen Yu Danqing Xin Tingting Li Dexiang Liu Zhen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1084-1091,共8页
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r... We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury. 展开更多
关键词 chemokine(C-X-C motif)ligand 11 cystathionineβsynthase H2S hypoxic ischemic brain injury inflammation L-CYSTEINE lipopolysaccharide microglia miR-9-5p neuroprotection
下载PDF
Ischemic accumulation of succinate induces Cdc42 succinylation and inhibits neural stem cell proliferation after cerebral ischemia/reperfusion
8
作者 Lin-Yan Huang Ju-Yun Ma +9 位作者 Jin-Xiu Song Jing-Jing Xu Rui Hong Hai-Di Fan Heng Cai Wan Wang Yan-Ling Wang Zhao-Li Hu Jian-Gang Shen Su-Hua Qi 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1040-1045,共6页
Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In t... Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In this study, we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery. We found that succinate levels increased in serum and brain tissue(cortex and hippocampus) after ischemia/reperfusion injury. Oxygen-glucose deprivation and reoxygenation stimulated primary neural stem cells to produce abundant succinate. Succinate can be converted into diethyl succinate in cells. Exogenous diethyl succinate inhibited the proliferation of mouse-derived C17.2 neural stem cells and increased the infarct volume in the rat model of cerebral ischemia/reperfusion injury. Exogenous diethyl succinate also increased the succinylation of the Rho family GTPase Cdc42 but repressed Cdc42 GTPase activity in C17.2 cells. Increasing Cdc42 succinylation by knockdown of the desuccinylase Sirt5 also inhibited Cdc42 GTPase activity in C17.2 cells. Our findings suggest that ischemic accumulation of succinate decreases Cdc42 GTPase activity by induction of Cdc42 succinylation, which inhibits the proliferation of neural stem cells and aggravates cerebral ischemia/reperfusion injury. 展开更多
关键词 CDC42 cerebral ischemia/reperfusion injury GPR91 neural stem cells neurogenesis PROLIFERATION SIRT5 SUCCINATE SUCCINYLATION
下载PDF
Network-pharmacology-based research on protective effects and underlying mechanism of Shuxin decoction against myocardial ischemia/reperfusion injury with diabetes
9
作者 Ling Yang Yang Jian +12 位作者 Zai-Yuan Zhang Bao-Wen Qi Yu-Bo Li Pan Long Yao Yang Xue Wang Shuo Huang Jing Huang Long-Fu Zhou Jie Ma Chang-Qing Jiang Yong-He Hu Wen-Jing Xiao 《World Journal of Diabetes》 SCIE 2023年第7期1057-1076,共20页
BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/reperfusion injury(MI/RI).Shuxin decoction(SXT)is a proven recipe modification from the classic herbal formula"Wu-tou-chi-shi-z... BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/reperfusion injury(MI/RI).Shuxin decoction(SXT)is a proven recipe modification from the classic herbal formula"Wu-tou-chi-shi-zhi-wan"according to the traditional Chinese medicine theory.It has been successfully used to alleviate secondary MI/RI in patients with diabetes mellitus in the clinical setting.However,the underlying mechanism is still unclear.AIM To further determine the mechanism of SXT in attenuating MI/RI associated with diabetes.METHODS This paper presents an ensemble model combining network pharmacology and biology.The Traditional Chinese Medicine System Pharmacology Database was accessed to select key components and potential targets of the SXT.In parallel,therapeutic targets associated with MI/RI in patients with diabetes were screened from various databases including Gene Expression Omnibus,DisGeNet,Genecards,Drugbank,OMIM,and PharmGKB.The potential targets of SXT and the therapeutic targets related to MI/RI in patients with diabetes were intersected and subjected to bioinformatics analysis using the Database for Annotation,Visualization and Integrated Discovery.The major results of bioinformatics analysis were subsequently validated by animal experiments.RESULTS According to the hypothesis derived from bioinformatics analysis,SXT could possibly ameliorate lipid metabolism disorders and exert anti-apoptotic effects in MI/RI associated with diabetes by reducing oxidized low density lipoprotein(LDL)and inhibiting the advanced glycation end products(AGE)-receptor for AGE(RAGE)signaling pathway.Subsequent animal experiments confirmed the hypothesis.The treatment with a dose of SXT(2.8 g/kg/d)resulted in a reduction in oxidized LDL,AGEs,and RAGE,and regulated the level of blood lipids.Besides,the expression of apoptosis-related proteins such as Bax and cleaved caspase 3 was down-regulated,whereas Bcl-2 expression was up-regulated.The findings indicated that SXT could inhibit myocardial apoptosis and improve cardiac function in MI/RI in diabetic rats.CONCLUSION This study indicated the active components and underlying molecular therapeutic mechanisms of SXT in MI/RI with diabetes.Moreover,animal experiments verified that SXT could regulate the level of blood lipids,alleviate cardiomyocyte apoptosis,and improve cardiac function through the AGE-RAGE signaling pathway. 展开更多
关键词 Chinese herbal drugs Network-pharmacology DIABETES Myocardial reperfusion injury Shuxin decoction
下载PDF
Remote ischemic perconditioning prevents liver transplantation-induced ischemia/reperfusion injury in rats: Role of ROS/RNS and e NOS 被引量:17
10
作者 Ning He Jun-Jun Jia +10 位作者 Jian-Hui Li Yan-Fei Zhou Bing-Yi Lin Yi-Fan Peng Jun-Jie Chen Tian-Chi Chen Rong-Liang Tong Li Jiang Hai-Yang Xie Lin Zhou Shu-Sen Zheng 《World Journal of Gastroenterology》 SCIE CAS 2017年第5期830-841,共12页
AIM To investigate the underlying mechanisms of the protective role of remote ischemic perconditioning(RIPerC) in rat liver transplantation. METHODS Sprague-Dawley rats were subjected to sham, orthotopic liver transpl... AIM To investigate the underlying mechanisms of the protective role of remote ischemic perconditioning(RIPerC) in rat liver transplantation. METHODS Sprague-Dawley rats were subjected to sham, orthotopic liver transplantation(OLT), ischemic postconditioning(IPostC) or RIPerC. After 3 h reperfusion, blood samples were taken for measurement of alanine aminotransferase, aspartate aminotransferase, creatinine(Cr) and creatinine kinase-myocardial band(CK-MB). The liver lobes were harvested for the following measurements: reactive oxygen species(ROS), H2O2, mitochondrial membrane potential(ΔΨm) and total nitric oxide(NO). These measurements were determined using an ROS/H2O2, JC1 and Total NOx Assay Kit, respectively. Endothelial NO synthase(e NOS) was analyzed by reverse transcription-polymerase chain reaction(RTPCR) and western blotting, and peroxynitrite was semiquantified by western blotting of 3-nitrotyrosine. RESULTS Compared with the OLT group, the grafts subjected to RIPerC showed significantly improved liver and remote organ functions(P < 0.05). ROS(P < 0.001) including H2O2(P < 0.05) were largely elevated in the OLT group as compared with the sham group, and RIPerC(P < 0.05) reversed this trend. The collapse of ΔΨm induced by OLT ischemia/reperfusion(I/R) injury was significantly attenuated in the RIPerC group(P < 0.001). A marked increase of NO content and phosphoserine eN OS, both in protein and mR NA levels, was observed in liver graft of the RIPer C group as compared with the OLT group(P < 0.05). I/R-induced 3-nitrotyrosine content was significantly reduced in the RIPerC group as compared with the OLT group(P < 0.05). There were no significant differences between the RIPerC and IPostC groups for all the results except Cr. The Cr level was lower in the RIPerC group than in the IPostC group(P < 0.01).CONCLUSION Liver graft protection by RIPerC is similar to or better than that of IPostC, and involves inhibition of oxidative stress and up-regulation of the PI3K/Akt/e NOS/NO pathway. 展开更多
关键词 肝移植 Ischemia/reperfusion 损害 遥远的 ischemic perconditioning Endothelial 氮的氧化物 synthase 反应的氧种类
下载PDF
Flow cytometric analysis of circulating microvesicles derived from myocardial ischemic preconditioning and cardioprotection of ischemia/reperfusion injury in rats 被引量:3
11
作者 Miao LIU Yi-lu WANG +10 位作者 Man SHANG Yao WANG Qi ZHANG Shao-xun WANG Su WEI Kun-wei ZHANG Chao LIU Yan-na WU Ming-lin LIU Jun-qiu SONG Yan-xia LIU 《中国应用生理学杂志》 CAS CSCD 2015年第6期524-531,共8页
Objective: To establish a flow cytometric method to detect the alteration of phenotypes and concentration of circulating microvesicles(MVs) from myocardial ischemic preconditioning(IPC) treated rats(IPC-MVs), and to i... Objective: To establish a flow cytometric method to detect the alteration of phenotypes and concentration of circulating microvesicles(MVs) from myocardial ischemic preconditioning(IPC) treated rats(IPC-MVs), and to investigate the effects of IPC-MVs on ischemia/reperfusion(I/R) injury in rats. Methods: Myocardial IPC was elicited by three cycles of 5-min ischemia and 5-min reperfusion of the left anterior descending(LAD) coronary artery. Platelet-free plasma(PFP) was isolated through two steps of centrifugation at room temperature from the peripheral blood, and IPC-MVs were isolated by ultracentrifugation from PFP. PFP was incubated with anti-CD61, anti-CD144, anti-CD45 and anti-Erythroid Cells, and added 1, 2 μm latex beads to calibrate and absolutely count by flow cytometry. For functional research, I/R injury was induced by 30-min ischemia and 120-min reperfusion of LAD. IPC-MVs 7 mg/kg were infused via the femoral vein in myocardial I/R injured rats. Mean arterial blood pressure(MAP), heart rate(HR) and ST-segment of electrocardiogram(ECG) were monitored throughout the experiment. Changes of myocardial morphology were observed after hematoxylin-eosin(HE) staining. The activity of plasma lactate dehydrogenase(LDH) was tested by Microplate Reader. Myocardial infarct size was measured by TTC staining. Results: Total IPC-MVs and different phenotypes, including platelet-derived MVs(PMVs), endothelial cell-derived MVs(EMVs), leucocyte-derived MVs(LMVs) and erythrocyte-derived MVs(RMVs) were all isolated which were identified membrane vesicles(<1 μm) with corresponding antibody positive. The numbers of PMVs, EMVs and RMVs were significantly increased in circulation of IPC treated rats(P<0.05, respectively). In addition, at the end of 120-min reperfusion in I/R injured rats, IPC-MVs markedly increased HR(P<0.01), decreased ST-segment and LDH activity(P<0.05, P<0.01). The damage of myocardium was obviously alleviated and myocardial infarct size was significantly lowered after IPC-MVs treatment(P<0.01). Conclusion: The method of flow cytometry was successfully established to detect the phenotypes and concentration alteration of IPC-MVs, including PMVs, EMVs, LMVs and RMVs. Furthermore, circulating IPC-MVs protected myocardium against I/R injury in rats. 展开更多
关键词 缺血/再灌注损伤 流式细胞仪分析 心肌梗死 缺血预处理 保护作用 大鼠 循环 微泡
下载PDF
bFGF and TGFβ expression in rat kidneys after ischemic/reperfusional gut injury and its relationship with tissue repair 被引量:13
12
作者 Yang YH Fu XB +2 位作者 Sun TZ Jiang LX Gu XM 《World Journal of Gastroenterology》 SCIE CAS CSCD 2000年第1期147-149,共3页
INTRODUCTION Intestinal isehemia/rePerfusion(I/R)oeeureommonly in eritieally 111 Patients.It 15 wellreeognized that gutl/R may eause tissue damageand dysfunetion of intestine,and induee
关键词 Subject headings ISCHEMIA-reperfusion injury intestinal basic FIBROBLAST GROWTH FACTOR transforming GROWTH FACTOR β gene EXPRESSION
下载PDF
Ischemic postconditioning enhances glycogen synthase kinase-3β expression and alleviates cerebral ischemia/reperfusion injury 被引量:2
13
作者 Bo Zhao Wenwei Gao +2 位作者 Jiabao Hou Yang Wu Zhongyuan Xia 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第19期1507-1512,共6页
The present study established global brain ischemia using the four-vessel occlusion method.Following three rounds of reperfusion for 30 seconds,and occlusion for 10 seconds,followed by reperfusion for 48 hours,infarct... The present study established global brain ischemia using the four-vessel occlusion method.Following three rounds of reperfusion for 30 seconds,and occlusion for 10 seconds,followed by reperfusion for 48 hours,infarct area,the number of TUNEL-positive cells and Bcl-2 expression were significantly reduced.However,glycogen synthase kinase-3β activity,cortical Bax and caspase-3 expression significantly increased,similar to results following ischemic postconditioning.Our results indicated that ischemic postconditioning may enhance glycogen synthase kinase-3β activity,a downstream molecule of the phosphatase and tensin homolog deleted on chromosome 10/phosphatidylinositol 3-kinase/protein kinase B signaling pathway,which reduces caspase-3 expression to protect the brain against ischemic injury. 展开更多
关键词 缺血/再灌注损伤 后处理 脑缺血 激酶 合酶 糖原 CASPASE-3 缺血再灌注损伤
下载PDF
Effect of Minocycline Postconditioning and Ischemic Postconditioning on Myocardial Ischemia-reperfusion Injury in Atherosclerosis Rabbits 被引量:1
14
作者 黄从刚 李睿 +6 位作者 曾秋棠 丁艳萍 邹永光 毛晓波 胡威 熊蓉 黎明 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2012年第4期524-529,共6页
This study examined the protective effect of ischemic postconditioning(IPoC) and minocycline postconditioning(MT) on myocardial ischemia-reperfusion(I/R) injury in atherosclerosis(AS) animals and the possible mechanis... This study examined the protective effect of ischemic postconditioning(IPoC) and minocycline postconditioning(MT) on myocardial ischemia-reperfusion(I/R) injury in atherosclerosis(AS) animals and the possible mechanism.Forty male healthy rabbits were injected with bovine serum albumin following feeding on a high fat diet for 6 weeks to establish AS model.AS rabbits were randomly divided into 3 groups:(1) I/R group,the rabbits were subjected to myocardial ischemia for 35 min and then reperfusion for 12 h;(2) IPoC group,the myocardial ischemia lasted for 35 min,and then reperfusion for 20 s and ischemia for 20 s [a total of 3 cycles(R20s/I20s×3)],and then reperfusion was sustained for 12 h;(3) MT group,minocycline was intravenously injected 10 min before reperfusion.The blood lipids,malondialdehyde(MDA),superoxide dismutase(SOD),soluble cell adhesion molecule(sICAM),myeloperoxidase(MPO),and cardiac troponin T(cTnT) were biochemically determined.The myocardial infarction size(IS) and apoptosis index(AI) were measured by pathological examination.The expression of bcl-2 and caspase-3 was detected in the myocardial tissue by using reverse transcription-polymerase chain reaction(RT-PCR).The results showed that the AS models were successfully established.The myocardial IS,the plasma levels of MDA,sICAM,MPO and cTnT,and the enzymatic activity of MPO were significantly decreased,and the plasma SOD activity was significantly increased in IPoC group and MT group as compared with I/R group(P<0.05 for all).The myocardial AI and the caspase-3 mRNA expression were lower and the bcl-2 mRNA expression was higher in IPoC and MT groups than those in I/R group(all P<0.05).It is concluded that the IPoC and MT can effectively reduce the I/R injury in the AS rabbits,and the mechanisms involved anti-oxidation,anti-inflammation,up-regulation of bcl-2 expression and down-regulation of caspase-3 expression.Minocycline can be used as an effective pharmacologic postconditioning drug to protect myocardia from I/R injury. 展开更多
关键词 MINOCYCLINE PHARMACOLOGIC POSTCONDITIONING ischemic POSTCONDITIONING myocardial ISCHEMIA-reperfusion ATHEROSCLEROSIS
下载PDF
Remote ischemic preconditioning protects liver ischemia-reperfusion injury by regulating eNOS-NO pathway and liver microRNA expressions in fatty liver rats 被引量:7
15
作者 Yun-Fei Duan Yong An +1 位作者 Feng Zhu Yong Jiang 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2017年第4期387-394,共8页
BACKGROUND:Ischemic preconditioning(IPC) is a strategy to reduce ischemia-reperfusion(I/R) injury.The protective effect of remote ischemic preconditioning(RIPC) on liver I/R injury is not clear.This study aimed to inv... BACKGROUND:Ischemic preconditioning(IPC) is a strategy to reduce ischemia-reperfusion(I/R) injury.The protective effect of remote ischemic preconditioning(RIPC) on liver I/R injury is not clear.This study aimed to investigate the roles of RIPC in liver I/R in fatty liver rats and the involvement of endothelial nitric oxide synthase-nitric oxide(eNOS-NO) pathway and microRNA expressions in this process.METHODS:A total of 32 fatty rats were randomly divided into the sham group,I/R group,RIPC group and RIPC+I/R group.Serum alanine aminotransferase(ALT),aspartate aminotransferase(AST) and nitric oxide(NO) were measured.Hematoxylin-eosin staining was used to observe histological changes of liver tissues,TUNEL to detect hepatocyte apoptosis,and immunohistochemistry assay to detect heat shock protein 70(HSP70) expression.Western blotting was used to detect liver inducibleNOS(iNOS) and eNOS protein levels and realtime quantitative polymerase chain reaction to detect miR-34a,miR-122 and miR-27b expressions.RESULTS:Compared with the sham and RIPC groups,serum ALT,AST and iNOS in liver tissue were significantly higher in other two groups,while serum NO and eNOS in liver tissue were lower,and varying degrees of edema,degeneration and inflammatory cell infiltration were found.Cell apoptosis number was slightly lower in the RIPC+I/R group than that in I/R group.Compared with the sham group,HSP70 expressions were significantly increased in other three groups(all P<0.05).Compared with the sham and RIPC groups,elevated miR-34a expressions were found in I/R and RIPC+I/R groups(P<0.05).MiR-122 and miR-27b were found significantly decreased in I/R and RIPC+I/R groups compared with the sham and RIPC groups(all P<0.05).CONCLUSION:RIPC can reduce fatty liver I/R injury by affecting the eNOS-NO pathway and liver microRNA expressions. 展开更多
关键词 FATTY IPC
下载PDF
Protective Effect of Electroacupuncture and Ischemic Preconditioning on the Circulatory Function in Pigs with Ischemia/Reperfusion Myocardial Injury
16
作者 王祥瑞 郁勤燕 +1 位作者 阎军 孙大金 《Chinese Journal of Integrated Traditional and Western Medicine》 2003年第2期124-127,共4页
Objective: To investigate the effects of electroacupuncture and ischemic preconditioning (IPC) on circulatory function in pigs with myocardial ischemia/reperfusion injury. Method: Eighteen pigs with myocardial ischemi... Objective: To investigate the effects of electroacupuncture and ischemic preconditioning (IPC) on circulatory function in pigs with myocardial ischemia/reperfusion injury. Method: Eighteen pigs with myocardial ischemia/reperfusion injury were randomly allocated into three groups, 6 in each. GroupⅠ was the control group, groupⅡ was the group that 收稿 IPC, and group Ⅲ was that 收稿 both electroacupuncture and IPC. Blood malondialdehyde (MDA), superoxide dismutase (SOD), creatine phosphokinase (CPK) and its isoenzyme (CK-MB), coronary artery flow and myocardial heat-shock protein (HSP) mRNA expression were detected for evaluation.Results: After treatment, the MDA content was decreased and SOD activities increased significantly in the acupuncture and IPC group compared with the control group (P<0.05 respectively). The levels of CPK, CK-MB at 20, 60 min after reperfusion were significantly higher than those before treatment, but the levels in group Ⅲ and groupⅡ were remarkably lower than those in groupⅠ. HSP70 mRNA expression was found to be increased in groupⅡ and group Ⅲ at 60 min after ischemia/reperfusion compared with those in groupⅠ. Conclusion: Electroacupuncture can enhance the myocardial protection of IPC against ischemia/reperfusion injury. The protective mechanism may be related to the improvement of antioxidation and the increased expression of HSP70 gene. 展开更多
关键词 心肌缺血 再灌注损伤 中西医结合治疗 电针 缺血预处理 热休克蛋白70 过氧化物歧化酶
下载PDF
Reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the antiferroptosis system:based on a novel rat model 被引量:3
17
作者 Tian-Lei Zhang Zhi-Wei Zhang +6 位作者 Wei Lin Xin-Ru Lin Ke-Xin Lin Ming-Chu Fang Jiang-Hu Zhu Xiao-Ling Guo Zhen-Lang Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2229-2236,共8页
Hypoxic-ischemic encephalopathy,which predisposes to neonatal death and neurological sequelae,has a high morbidity,but there is still a lack of effective prevention and treatment in clinical practice.To better underst... Hypoxic-ischemic encephalopathy,which predisposes to neonatal death and neurological sequelae,has a high morbidity,but there is still a lack of effective prevention and treatment in clinical practice.To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy,in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats.First,based on the conventional RiceVannucci model of hypoxic-ischemic encephalopathy,we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge.Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins.We also performed transmission electron microscopy and found typical characteristics of ferroptosis,including mitochondrial shrinkage,ruptured mitochondrial membranes,and reduced or absent mitochondrial cristae.Further,both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein,which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage.Finally,we found that ferroptosis-related Ferritin(Fth1)and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury.Based on these results,it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion.Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system. 展开更多
关键词 ferroptosis hypoxic-ischemic brain injury hypoxic-ischemic encephalopathy hypoxic-ischemic reperfusion brain injury mitochondria model proteomic analysis reperfusion Rice-Vannucci transmission electron microscopy
下载PDF
A novel phenotype of B cells associated with enhanced phagocytic capability and chemotactic function after ischemic stroke 被引量:1
18
作者 Rui Wang Huaming Li +5 位作者 Chenhan Ling Xiaotao Zhang Jianan Lu Weimin Luan Jianmin Zhang Ligen Shi 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2413-2423,共11页
Accumulating evidence has demonstrated the involvement of B cells in neuroinflammation and neuroregeneration.However,the role of B cells in ischemic stroke remains unclear.In this study,we identified a novel phenotype... Accumulating evidence has demonstrated the involvement of B cells in neuroinflammation and neuroregeneration.However,the role of B cells in ischemic stroke remains unclear.In this study,we identified a novel phenotype of macrophage-like B cells in brain-infiltrating immune cells expressing a high level of CD45.Macrophage-like B cells chara cterized by co-expression of B-cell and macrophage markers,showed stronger phagocytic and chemotactic functions compared with other B cells and showed upregulated expression of phagocytosis-related genes.Gene Ontology analysis found that the expression of genes associated with phagocytosis,including phagosome-and lysosome-related genes,was upregulated in macrophage-like B cells.The phagocytic activity of macrophage-like B cells was ve rified by immunostaining and three-dimensional reconstruction,in which TREM2-labeled macrophage-like B cells enwrapped and internalized myelin debris after cerebral ischemia.Cell-cell interaction analysis revealed that macrophage-like B cells released multiple chemokines to recruit peripheral immune cells mainly via CCL pathways.Single-cell RNA sequencing showed that the transdiffe rentiation to macrophage-like B cells may be induced by specific upregulation of the transcription factor CEBP fa mily to the myeloid lineage and/or by downregulation of the transcription factor Pax5 to the lymphoid lineage.Furthermore,this distinct B cell phenotype was detected in brain tissues from mice or patients with traumatic brain injury,Alzheimer’s disease,and glioblastoma.Overall,these results provide a new perspective on the phagocytic capability and chemotactic function of B cells in the ischemic brain.These cells may serve as an immunotherapeutic target for regulating the immune response of ischemic stroke. 展开更多
关键词 B cell CHEMOTAXIS immune infiltration immunity ischemic stroke PHAGOCYTOSIS single-cell RNA sequencing transcription factor transcriptome transient cerebral ischemia/reperfusion
下载PDF
Hepatic ischemia-reperfusion injury in liver transplant setting:mechanisms and protective strategies 被引量:14
19
作者 Sanketh Rampes Daqing Ma 《The Journal of Biomedical Research》 CAS CSCD 2019年第4期221-234,共14页
Hepatic ischemia-reperfusion injury is a major cause of liver transplant failure,and is of increasing significance due to increased use of expanded criteria livers for transplantation.This review summarizes the mechan... Hepatic ischemia-reperfusion injury is a major cause of liver transplant failure,and is of increasing significance due to increased use of expanded criteria livers for transplantation.This review summarizes the mechanisms and protective strategies for hepatic ischemia-reperfusion injury in the context of liver transplantation.Pharmacological therapies,the use of pre-and post-conditioning and machine perfusion are discussed as protective strategies.The use of machine perfusion offers significant potential in the reconditioning of liver grafts and the prevention of hepatic ischemia-reperfusion injury,and is an exciting and active area of research,which needs more study clinically. 展开更多
关键词 liver TRANSPLANTATION reperfusion injury mechanism THERAPEUTICS ischemic PRECONDITIONING
下载PDF
Preconditioning and postconditioning reduce hepatic ischemia-reperfusion injury in rats 被引量:16
20
作者 Zhang, Wan-Xing Yin, Wen +5 位作者 Zhang, Lei Wang, Lan-Hui Bao, Lei Tuo, Hong-Fang Zhou, Li-Fang Wang, Chun-Cheng 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2009年第6期586-590,共5页
BACKGROUND:Ischemia-reperfusion injury occurs when ischemic tissues or organs suffer from further functional and structural damage when their blood supply recovers.This study aimed to contrast the protective effects o... BACKGROUND:Ischemia-reperfusion injury occurs when ischemic tissues or organs suffer from further functional and structural damage when their blood supply recovers.This study aimed to contrast the protective effects of ischemic preconditioning and ischemic postconditioning in hepatic ischemia-reperfusion injury in rats.METHODS:Thirty-two healthy male Wistar rats were randomly divided into four groups:sham-operated(SO),ischemia-reperfusion(IR),ischemic preconditioning(I-pre),and ischemic postconditioning(I-post).Blood samples and hepatic tissue were taken from all groups after the experiments.RESULTS:There were significant differences between the IR,I-pre and I-post groups in alanine aminotransferase and aspartate aminotransferase levels,NF-κB p65 expression,apoptosis index and superoxide dismutase activity in hepatic tissue.There were no significant differences between the I-pre and I-post groups.CONCLUSIONS:Ischemic postconditioning and ischemic preconditioning reduce hepatic ischemia-reperfusion injury,but in clinical practice the former is a more appropriate choice. 展开更多
关键词 liver ISCHEMIA-reperfusion injury ischemic POSTCONDITIONING ischemic PRECONDITIONING NF-κB
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部