期刊文献+
共找到260篇文章
< 1 2 13 >
每页显示 20 50 100
Isogeometric Analysis of Hyperelastic Material Characteristics for Calcified Aortic Valve
1
作者 Long Chen Ting Li +3 位作者 Liang Liu Wenshuo Wang Xiaoxiao Du Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2773-2806,共34页
This study explores the implementation of computed tomography(CT)reconstruction and simulation techniques for patient-specific valves,aiming to dissect the mechanical attributes of calcified valves within transcathete... This study explores the implementation of computed tomography(CT)reconstruction and simulation techniques for patient-specific valves,aiming to dissect the mechanical attributes of calcified valves within transcatheter heart valve replacement(TAVR)procedures.In order to facilitate this exploration,it derives pertinent formulas for 3D multi-material isogeometric hyperelastic analysis based on Hounsfield unit(HU)values,thereby unlocking foundational capabilities for isogeometric analysis in calcified aortic valves.A series of uniaxial and biaxial tensile tests is executed to obtain an accurate constitutive model for calcified active valves.To mitigate discretization errors,methodologies for reconstructing volumetric parametric models,integrating both geometric and material attributes,are introduced.Applying these analytical formulas,constitutive models,and precise analytical models to isogeometric analyses of calcified valves,the research ascertains their close alignment with experimental results through the close fit in displacement-stress curves,compellingly validating the accuracy and reliability of the method.This study presents a step-by-step approach to analyzing themechanical characteristics of patient-specific valves obtained fromCT images,holding significant clinical implications and assisting in the selection of treatment strategies and surgical intervention approaches in TAVR procedures. 展开更多
关键词 Calcified aortic valves tensile test constitutive relations CT reconstruction isogeometric hyperelastic analysis
下载PDF
A Deep Learning Approach to Shape Optimization Problems for Flexoelectric Materials Using the Isogeometric Finite Element Method
2
作者 Yu Cheng Yajun Huang +3 位作者 Shuai Li Zhongbin Zhou Xiaohui Yuan Yanming Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1935-1960,共26页
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization... A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization. 展开更多
关键词 Shape optimization deep learning flexoelectric structure finite element method isogeometric
下载PDF
A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing
3
作者 Zhaohui Xia Baichuan Gao +3 位作者 Chen Yu Haotian Han Haobo Zhang Shuting Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1103-1137,共35页
This paper aims to solve large-scale and complex isogeometric topology optimization problems that consumesignificant computational resources. A novel isogeometric topology optimization method with a hybrid parallelstr... This paper aims to solve large-scale and complex isogeometric topology optimization problems that consumesignificant computational resources. A novel isogeometric topology optimization method with a hybrid parallelstrategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equationsolving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency ofCPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload betweenCPU and GPU. To illustrate the advantages of the proposedmethod, three benchmark examples are tested to verifythe hybrid parallel strategy in this paper. The results show that the efficiency of the hybrid method is faster thanserial CPU and parallel GPU, while the speedups can be up to two orders of magnitude. 展开更多
关键词 Topology optimization high-efficiency isogeometric analysis CPU/GPU parallel computing hybrid OpenMPCUDA
下载PDF
Full-Scale Isogeometric Topology Optimization of Cellular Structures Based on Kirchhoff-Love Shells
4
作者 Mingzhe Huang Mi Xiao +3 位作者 Liang Gao Mian Zhou Wei Sha Jinhao Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2479-2505,共27页
Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method ba... Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method based on Kirchhoff-Love shells for designing cellular tshin-shell structures with excellent damage tolerance ability is proposed.This method utilizes high-order continuous nonuniform rational B-splines(NURBS)as basis functions for Kirchhoff-Love shell elements.The geometric and analysis models of thin shells are unified by isogeometric analysis(IGA)to avoid geometric approximation error and improve computational accuracy.The topological configurations of thin-shell structures are described by constructing the effective density field on the controlmesh.Local volume constraints are imposed in the proximity of each control point to obtain bone-like cellular structures.To facilitate numerical implementation,the p-norm function is used to aggregate local volume constraints into an equivalent global constraint.Several numerical examples are provided to demonstrate the effectiveness of the proposed method.After simulation and comparative analysis,the results indicate that the cellular thin-shell structures optimized by the proposed method exhibit great load-carrying behavior and high damage robustness. 展开更多
关键词 Cellular thin-shell structures isogeometric analysis full-scale topology optimization Kirchhoff–Love shells
下载PDF
Application of Isogeometric Analysis Method in Three-Dimensional Gear Contact Analysis
5
作者 Long Chen Yan Yu +2 位作者 Yanpeng Shang Zhonghou Wang Jing Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期817-846,共30页
Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a thre... Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a threedimensional body parametric gear model of IGA is established,and a theoretical formula is derived to realize single-tooth contact analysis.Results were benchmarked against those obtained from commercial software utilizing the finite element analysis(FEA)method to validate the accuracy of our approach.Our findings indicate that the IGA-based contact algorithmsuccessfullymet theHertz contact test.When juxtaposed with the FEA approach,the IGAmethod demonstrated fewer node degrees of freedomand reduced computational units,all whilemaintaining comparable accuracy.Notably,the IGA method appeared to exhibit consistency in analysis accuracy irrespective of computational unit density,and also significantlymitigated non-physical oscillations in contact stress across the tooth width.This underscores the prowess of IGA in contact analysis.In conclusion,IGA emerges as a potent tool for addressing contact analysis challenges and holds significant promise for 3D gear modeling,simulation,and optimization of various mechanical components. 展开更多
关键词 Contact analysis involute gear isogeometric analysis finite element analysis
下载PDF
Parameterization Transfer for a Planar Computational Domain in Isogeometric Analysis 被引量:1
6
作者 Jinlan Xu Shuxin Xiao +1 位作者 Gang Xu Renshu Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1957-1973,共17页
In this paper,we propose a parameterization transfer algorithm for planar domains bounded by B-spline curves,where the shapes of the planar domains are similar.The domain geometries are considered to be similar if the... In this paper,we propose a parameterization transfer algorithm for planar domains bounded by B-spline curves,where the shapes of the planar domains are similar.The domain geometries are considered to be similar if their simplified skeletons have the same structures.One domain we call source domain,and it is parameterized using multi-patch B-spline surfaces.The resulting parameterization is C1 continuous in the regular region and G1 continuous around singular points regardless of whether the parameterization of the source domain is C1/G1 continuous or not.In this algorithm,boundary control points of the source domain are extracted from its parameterization as sequential points,and we establish a correspondence between sequential boundary control points of the source domain and the target boundary through discrete sampling and fitting.Transfer of the parametrization satisfies C1/G1 continuity under discrete harmonic mapping with continuous constraints.The new algorithm has a lower calculation cost than a decomposition-based parameterization with a high-quality parameterization result.We demonstrate that the result of the parameterization transfer in this paper can be applied in isogeometric analysis.Moreover,because of the consistency of the parameterization for the two models,this method can be applied in many other geometry processing algorithms,such as morphing and deformation. 展开更多
关键词 isogeometric analysis parameterization transfer discrete harmonic mapping C1/G1 continuity
下载PDF
Multi-Patch Black-White Topology Optimization in Isogeometric Analysis
7
作者 Qingyuan Hu Yuan Liang +2 位作者 Menghao Liu Manfeng Hu Yawen Mao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期459-481,共23页
Topological optimization plays a guiding role in the conceptual design process.This paper conducts research on structural topology optimization algorithm within the framework of isogeometric analysis.For multi-compone... Topological optimization plays a guiding role in the conceptual design process.This paper conducts research on structural topology optimization algorithm within the framework of isogeometric analysis.For multi-component structures,the Nitsche’smethod is used to glue differentmeshes to performisogeometricmulti-patch analysis.The discrete variable topology optimization algorithm based on integer programming is adopted in order to obtain clear boundaries for topology optimization.The sensitivity filtering method based on the Helmholtz equation is employed for averaging of curved elements’sensitivities.In addition,a simple averaging method along coupling interfaces is proposed in order to ensure the material distribution across coupling areas is reasonably smooth.Finally,the performance of the algorithm is demonstrated by numerical examples,and the effectiveness of the algorithm is verified by comparing it with the results obtained by single-patch and ABAQUS cases. 展开更多
关键词 isogeometric topology optimization nitsche multi-patch integer programming
下载PDF
Topology Optimization of Sound-Absorbing Materials for Two-Dimensional Acoustic Problems Using Isogeometric Boundary Element Method
8
作者 Jintao Liu Juan Zhao Xiaowei Shen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期981-1003,共23页
In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.T... In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band. 展开更多
关键词 Boundary element method isogeometric analysis two-dimensional acoustic analysis sound-absorbing materials topology optimization adjoint variable method
下载PDF
An Isogeometric Cloth Simulation Based on Fast Projection Method
9
作者 Xuan Peng Chao Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1837-1853,共17页
A novel continuum-based fast projection scheme is proposed for cloth simulation.Cloth geometry is described by NURBS,and the dynamic response is modeled by a displacement-only Kirchhoff-Love shell element formulated d... A novel continuum-based fast projection scheme is proposed for cloth simulation.Cloth geometry is described by NURBS,and the dynamic response is modeled by a displacement-only Kirchhoff-Love shell element formulated directly on NURBS geometry.The fast projection method,which solves strain limiting as a constrained Lagrange problem,is extended to the continuum version.Numerical examples are studied to demonstrate the performance of the current scheme.The proposed approach can be applied to grids of arbitrary topology and can eliminate unrealistic over-stretching efficiently if compared to spring-based methodologies. 展开更多
关键词 Cloth simulation isogeometric analysis strain limiting fast projection
下载PDF
New Perspective to Isogeometric Analysis:Solving Isogeometric Analysis Problem by Fitting Load Function
10
作者 Jingwen Ren Hongwei Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2957-2984,共28页
Isogeometric analysis(IGA)is introduced to establish the direct link between computer-aided design and analysis.It is commonly implemented by Galerkin formulations(isogeometric Galerkin,IGA-G)through the use of nonuni... Isogeometric analysis(IGA)is introduced to establish the direct link between computer-aided design and analysis.It is commonly implemented by Galerkin formulations(isogeometric Galerkin,IGA-G)through the use of nonuniform rational B-splines(NURBS)basis functions for geometric design and analysis.Another promising approach,isogeometric collocation(IGA-C),working directly with the strong form of the partial differential equation(PDE)over the physical domain defined by NURBS geometry,calculates the derivatives of the numerical solution at the chosen collocation points.In a typical IGA,the knot vector of the NURBS numerical solution is only determined by the physical domain.A new perspective on the IGAmethod is proposed in this study to improve the accuracy and convergence of the solution.Solving the PDE with IGA can be regarded as fitting the load function defined on the NURBS geometry(right-hand side)with derivatives of the NURBS numerical solution(left-hand side).Moreover,the design of the knot vector has a close relationship to theNURBS functions to be fitted in the area of data fitting in geometric design.Therefore,the detected feature points of the load function are integrated into the initial knot vector of the physical domainto construct thenewknot vector of thenumerical solution.Then,they are connected seamlessly with the IGA-C framework for its great potential combining the accuracy and smoothness merits with the computational efficiency,which we call isogeometric collocation by fitting load function(IGACL).In numerical experiments,we implement our method to solve 1D,2D,and 3D PDEs and demonstrate the improvement in accuracy by comparing it with the standard IGA-C method.We also verify the superiority in the accuracy of our knot selection scheme when employed in the IGA-G method,which we call isogeometric Galerkin by fitting load function(IGA-GL). 展开更多
关键词 isogeometric analysis collocation methods feature point detection knot vector
下载PDF
Isogeometric Analysis of Longitudinal Displacement of a Simplified Tunnel Model Based on Elastic Foundation Beam
11
作者 Zhihui Xiong Lei Kou +2 位作者 Jinjie Zhao Hao Cui Bo Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期803-824,共22页
Serious uneven settlement of the tunnel may directly cause safety problems.At this stage,the deformation of the tunnel is predicted and analyzed mainly by numerical simulation,while the commonly used finite element me... Serious uneven settlement of the tunnel may directly cause safety problems.At this stage,the deformation of the tunnel is predicted and analyzed mainly by numerical simulation,while the commonly used finite element method(FEM)uses low-order continuous elements.Therefore,the accuracy of tunnel settlement prediction is not enough.In this paper,a method is proposed to study the vertical deformation of the tunnel by using the combination of isogeometric analysis(IGA)and Bézier extraction operator.Compared with the traditional IGA method,this method can be easily integrated into the existing FEM framework,and ensure the same accuracy.A numerical example of an elastic foundation beam subjected to uniformly distributed load and an engineering example of an equivalent elastic foundation beamof the tunnel are given.The results show that the solution of the IGA method is closer to the theoretical solution of the initial-parameter method than the FEM,and the accuracy and reliability of the proposedmodel are verified.Moreover,it not only provides some theoretical support for the longitudinal design of the tunnel,but also provides a new way for the application and popularization of IGA in tunnel engineering. 展开更多
关键词 isogeometric analysis Bézier element Winkler foundation beam TUNNEL
下载PDF
Explicit Isogeometric Topology Optimization Method with Suitably Graded Truncated Hierarchical B-Spline
12
作者 Haoran Zhu Xinhao Gao +3 位作者 Aodi Yang Shuting Wang Xianda Xie Tifan Xiong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1435-1456,共22页
This work puts forward an explicit isogeometric topology optimization(ITO)method using moving morphable components(MMC),which takes the suitably graded truncated hierarchical B-Spline based isogeometric analysis as th... This work puts forward an explicit isogeometric topology optimization(ITO)method using moving morphable components(MMC),which takes the suitably graded truncated hierarchical B-Spline based isogeometric analysis as the solver of physical unknown(SGTHB-ITO-MMC).By applying properly basis graded constraints to the hierarchical mesh of truncated hierarchical B-splines(THB),the convergence and robustness of the SGTHB-ITOMMC are simultaneously improved and the tiny holes occurred in optimized structure are eliminated,due to the improved accuracy around the explicit structural boundaries.Moreover,an efficient computational method is developed for the topological description functions(TDF)ofMMC under the admissible hierarchicalmesh,which consists of reducing the dimensionality strategy for design space and the locally computing strategy for hierarchical mesh.We apply the above SGTHB-ITO-MMC with improved efficiency to a series of 2D and 3Dcompliance design problems.The numerical results show that the proposed SGTHB-ITO-MMC method outperforms the traditional THB-ITO-MMCmethod in terms of convergence rate and efficiency.Therefore,the proposed SGTHB-ITO-MMC is an effective way of solving topology optimization(TO)problems. 展开更多
关键词 isogeometric topology optimization moving morphable components truncated hierarchical B-spline suitably graded hierarchical mesh
下载PDF
Interpolating Isogeometric Boundary Node Method and Isogeometric Boundary Element Method Based on Parameter Space 被引量:1
13
作者 Hongyin Yang Jiwei Zhong +2 位作者 Ying Wang Xingquan Chen Xiaoya Bian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期807-824,共18页
In this paper,general interpolating isogeometric boundary node method(IIBNM)and isogeometric boundary element method(IBEM)based on parameter space are proposed for 2D elasticity problems.In both methods,the integral c... In this paper,general interpolating isogeometric boundary node method(IIBNM)and isogeometric boundary element method(IBEM)based on parameter space are proposed for 2D elasticity problems.In both methods,the integral cells and elements are defined in parameter space,which can reproduce the geometry exactly at all the stages.In IIBNM,the improved interpolating moving leastsquare method(IIMLS)is applied for field approximation and the shape functions have the delta function property.The Lagrangian basis functions are used for field approximation in IBEM.Thus,the boundary conditions can be imposed directly in both methods.The shape functions are defined in 1D parameter space and no curve length needs to be computed.Besides,most methods for the treatment of the singular integrals in the boundary element method can be applied in IIBNM and IBEM directly.Numerical examples have demonstrated the accuracy of the proposed methods. 展开更多
关键词 Interpolating isogeometric boundary node method isogeometric boundary element method parameter space improved interpolating moving least-square method Lagrangian basis functions
下载PDF
Isogeometric Collocation:A Mixed Displacement-Pressure Method for Nearly Incompressible Elasticity Dedicated to Professor Karl Stark Pister for his 95th birthday
14
作者 S.Morganti F.Fahrendorf +3 位作者 L.De Lorenzis J.A.Evans T.J.R.Hughes A.Reali 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第12期1125-1150,共26页
We investigate primal and mixed u−p isogeometric collocation methods for application to nearly-incompressible isotropic elasticity.The primal method employs Navier’s equations in terms of the displacement unknowns,an... We investigate primal and mixed u−p isogeometric collocation methods for application to nearly-incompressible isotropic elasticity.The primal method employs Navier’s equations in terms of the displacement unknowns,and the mixed method employs both displacement and pressure unknowns.As benchmarks for what might be considered acceptable accuracy,we employ constant-pressure Abaqus finite elements that are widely used in engineering applications.As a basis of comparisons,we present results for compressible elasticity.All the methods were completely satisfactory for the compressible case.However,results for low-degree primal methods exhibited displacement locking and in general deteriorated in the nearly-incompressible case.The results for the mixed methods behaved very well for two of the problems we studied,achieving levels of accuracy very similar to those for the compressible case.The third problem,which we consider a“torture test”presented a more complex story for the mixed methods in the nearly-incompressible case. 展开更多
关键词 isogeometric analysis isogeometric collocation nearly-incompressible elasticity
下载PDF
A Comprehensive Review of Isogeometric Topology Optimization:Methods,Applications and Prospects 被引量:6
15
作者 Jie Gao Mi Xiao +1 位作者 Yan Zhang Liang Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第6期24-37,共14页
Topology Optimization(TO)is a powerful numerical technique to determine the optimal material layout in a design domain,which has accepted considerable developments in recent years.The classic Finite Element Method(FEM... Topology Optimization(TO)is a powerful numerical technique to determine the optimal material layout in a design domain,which has accepted considerable developments in recent years.The classic Finite Element Method(FEM)is applied to compute the unknown structural responses in TO.However,several numerical deficiencies of the FEM significantly influence the effectiveness and efficiency of TO.In order to eliminate the negative influence of the FEM on TO,IsoGeometric Analysis(IGA)has become a promising alternative due to its unique feature that the Computer-Aided Design(CAD)model and Computer-Aided Engineering(CAE)model can be unified into a same mathematical model.In the paper,the main intention is to provide a comprehensive overview for the developments of Isogeometric Topology Optimization(ITO)in methods and applications.Finally,some prospects for the developments of ITO in the future are also presented. 展开更多
关键词 Topology optimization isogeometric analysis CAD CAE
下载PDF
Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis 被引量:4
16
作者 Yingjun Wang Zhongyuan Liao +2 位作者 Shengyu Shi Zhenpei Wang Leong Hien Poh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期433-458,共26页
Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.A... Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches. 展开更多
关键词 DATA-DRIVEN BP neural network petal-shaped auxetics negative Poisson’s ratio structural design isogeometric analysis.
下载PDF
Structural Design Optimization Using Isogeometric Analysis: A Comprehensive Review 被引量:3
17
作者 Yingjun Wang Zhenpei Wang +1 位作者 Zhaohui Xia Leong Hien Poh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第12期455-507,共53页
Isogeometric analysis(IGA),an approach that integrates CAE into conventional CAD design tools,has been used in structural optimization for 10 years,with plenty of excellent research results.This paper provides a compr... Isogeometric analysis(IGA),an approach that integrates CAE into conventional CAD design tools,has been used in structural optimization for 10 years,with plenty of excellent research results.This paper provides a comprehensive review on isogeometric shape and topology optimization,with a brief coverage of size optimization.For isogeometric shape optimization,attention is focused on the parametrization methods,mesh updating schemes and shape sensitivity analyses.Some interesting observations,e.g.the popularity of using direct(differential)method for shape sensitivity analysis and the possibility of developing a large scale,seamlessly integrated analysis-design platform,are discussed in the framework of isogeometric shape optimization.For isogeometric topology optimization(ITO),we discuss different types of ITOs,e.g.ITO using SIMP(Solid Isotropic Material with Penalization)method,ITO using level set method,ITO using moving morphable com-ponents(MMC),ITO with phase field model,etc.,their technical details and applications such as the spline filter,multi-resolution approach,multi-material problems and stress con-strained problems.In addition to the review in the last 10 years,the current developmental trend of isogeometric structural optimization is discussed. 展开更多
关键词 isogeometric ANALYSIS STRUCTURAL OPTIMIZATION SHAPE OPTIMIZATION TOPOLOGY OPTIMIZATION sensitivity analysis.
下载PDF
Multiresolution Isogeometric Topology Optimisation Using Moving Morphable Voids 被引量:3
18
作者 Bingxiao Du Yong Zhao +2 位作者 Wen Yao Xuan Wang Senlin Huo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1119-1140,共22页
A general and new explicit isogeometric topology optimisation approach with moving morphable voids(MMV)is proposed.In this approach,a novel multiresolution scheme with two distinct discretisation levels is developed t... A general and new explicit isogeometric topology optimisation approach with moving morphable voids(MMV)is proposed.In this approach,a novel multiresolution scheme with two distinct discretisation levels is developed to obtain high-resolution designs with a relatively low computational cost.Ersatz material model based on Greville abscissae collocation scheme is utilised to represent both the Young’s modulus of the material and the density field.Two benchmark examples are tested to illustrate the effectiveness of the proposed method.Numerical results show that high-resolution designs can be obtained with relatively low computational cost,and the optimisation can be significantly improved without introducing additional DOFs. 展开更多
关键词 isogeometric analysis(IGA) MULTIRESOLUTION moving morphable voids(MMV) topology optimisation.
下载PDF
Three-Dimensional Isogeometric Analysis of Flexoelectricity with MATLAB Implementation 被引量:2
19
作者 Hamid Ghasemi Harold S.Park +1 位作者 Xiaoying Zhuang Timon Rabczuk 《Computers, Materials & Continua》 SCIE EI 2020年第11期1157-1179,共23页
Flexoelectricity is a general electromechanical phenomenon where the electric polarization exhibits a linear dependency to the gradient of mechanical strain and vice versa.The truncated pyramid compression test is amo... Flexoelectricity is a general electromechanical phenomenon where the electric polarization exhibits a linear dependency to the gradient of mechanical strain and vice versa.The truncated pyramid compression test is among the most common setups to estimate the flexoelectric effect.We present a three-dimensional isogeometric formulation of flexoelectricity with its MATLAB implementation for a truncated pyramid setup.Besides educational purposes,this paper presents a precise computational model to illustrate how the localization of strain gradients around pyramidal boundary shapes contributes in generation of electrical energy.The MATLAB code is supposed to help learners in the Isogeometric Analysis and Finite Elements Methods community to learn how to solve a fully coupled problem,which requires higher order approximations,numerically.The complete MATLAB code which is available as source code distributed under a BSD-style license,is provided in the part of Supplementary Materials of the paper. 展开更多
关键词 FLEXOELECTRICITY isogeometric Analysis(IGA) MATLAB B-spline elements finite elements coupled electromechanical problem
下载PDF
A High-Accuracy Single Patch Representation of Multi-Patch Geometries with Applications to Isogeometric Analysis 被引量:2
20
作者 Jinlan Xu Ningning Sun Gang Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第8期627-642,共16页
This paper presents a novel approximating method to construct highprecision single-patch representation of B-spline surface from a multi-patch representation for isogeometric applications.In isogeometric analysis,mult... This paper presents a novel approximating method to construct highprecision single-patch representation of B-spline surface from a multi-patch representation for isogeometric applications.In isogeometric analysis,multi-patch structure is not easy to achieve high continuity between neighboring patches which will reduce the advantage of isogeometric analysis in a sense.The proposed method can achieve high continuity at surface stitching region with low geometric error,and this technique exploits constructing the approximate surface with several control points are from original surfaces,which guarantees the local feature of the surface can be well-preserved with high precision.With the proposed approximating method,isogeometric analysis results using the new single-patch can be obtained efficiently compared with the original multi-patch structure.Several examples are presented to illustrate the effectiveness,accuracy and efficiency of the proposed method. 展开更多
关键词 isogeometric analysis patch merging multi-patch structure computational efficiency
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部