Textile dyes are dramatic sources of pollution and non-aesthetic disturbance of aquatic life and therefore represent a potential risk of bioaccumulation that can affect living species.It is imperative to reduce or eli...Textile dyes are dramatic sources of pollution and non-aesthetic disturbance of aquatic life and therefore represent a potential risk of bioaccumulation that can affect living species.It is imperative to reduce or eliminate these dyes from liquid effluents with innovative biomaterials and methods.Therefore,this research aims to highlight the performance of Capparis spinosa L waste-activated carbon(CSLW-AC)adsorbent to remove crystal violet(CV)from an aqueous solution.The mechanism of CV adsorption on CSLW-AC was evaluated based on the coupling of experimental data and different characterization techniques.The efficiency of the CSLW-AC material reflected by the equilibrium adsorption capacity of CV could reach more than 195.671 mg·g^(–1) when 0.5 g·L^(–1) of CSLW-AC(Particle size≤250μm)is introduced into the CV of initial concentration of 100 mg·L^(–1) at pH 6 and temperature 65℃ and in the presence of potassium ions after 60 min of contact time according to the one parameter at a time studies.The adsorption behavior of CV on CSLW-AC was found to be consistent with the pseudo-second-order kinetic model and Frumkin's linear isothermal model.The thermodynamic aspects indicate that the process is physical,spontaneous,and endothermic.The optimization of the process by the Box Behnken design of experiments resulted in an adsorption capacity approaching 183.544 mg·g^(–1)([CV]=100 mg·L^(–1) and[CSLW-AC]=0.5 g·L^(–1) at 35 min).The results of the Lactuca sativa seeds germination in treated CV(70%),adsorbent solvent and thermal regeneration(more than 5 cycles),and process cost analysis(1.0484 USD·L^(–1))tests are encouraging and promising for future exploitations of the CSLW-AC material in different industrial fields.展开更多
In this paper, an efficient methodology for synthesizing the indirect work exchange networks(WEN) considering isothermal process and adiabatic process respectively based on transshipment model is first proposed. In co...In this paper, an efficient methodology for synthesizing the indirect work exchange networks(WEN) considering isothermal process and adiabatic process respectively based on transshipment model is first proposed. In contrast with superstructure method, the transshipment model is easier to obtain the minimum utility consumption taken as the objective function and more convenient for us to attain the optimal network configuration for further minimizing the number of units. Different from division of temperature intervals in heat exchange networks,different pressure intervals are gained according to the maximum compression/expansion ratio in consideration of operating principles of indirect work exchangers and the characteristics of no pressure constraints for stream matches. The presented approach for WEN synthesis is a linear programming model applied to the isothermal process, but for indirect work exchange networks with adiabatic process, a nonlinear programming model needs establishing. Additionally, temperatures should be regarded as decision variables limited to the range between inlet and outlet temperatures in each sub-network. The constructed transshipment model can be solved first to get the minimum utility consumption and further to determine the minimum number of units by merging the adjacent pressure intervals on the basis of the proposed merging methods, which is proved to be effective through exergy analysis at the level of units structures. Finally, two cases are calculated to confirm it is dramatically feasible and effective that the optimal WEN configuration can be gained by the proposed method.展开更多
The thermal decompositions of Ca-bentonites (CaB) from Santai ,Shichuan Province, China over the temperature rage of 30-1100℃ were investigated by simultaneous thermal analyzer. Non-isothermal Kinetic analysis were e...The thermal decompositions of Ca-bentonites (CaB) from Santai ,Shichuan Province, China over the temperature rage of 30-1100℃ were investigated by simultaneous thermal analyzer. Non-isothermal Kinetic analysis were employed to study the thermal decomposition mechanism by using Netzsch Thermokinetics software. The dependence of the activation energy on conversion degree were evaluated by isoconversional methods. The probably mechanism and the corresponding kinetic parameters were determined by multivariate non-linear regression program.展开更多
High surface area activated carbons were produced by thermal activation of waste bamboo scaffolding with phosphoric acid.Single component equilibrium dye adsorption was conducted on the carbons produced and compared w...High surface area activated carbons were produced by thermal activation of waste bamboo scaffolding with phosphoric acid.Single component equilibrium dye adsorption was conducted on the carbons produced and compared with a commercially available carbon.Two acid dyes with different molecular sizes,namely Acid Yellow 117(AY117) and Acid Blue 25(AB25),were used to evaluate the adsorption capacity of the produced carbons.It was found that the dye with smaller molecular size,AB 25,was readily adsorbed onto the produced carbon,nearly three times higher than a commercially available carbon,while the larger size dye,AY117,showed little adsorption.The experimental data were analyzed using isotherm equations including Langmuir,Freundlich,Tempkin,Toth,Redlich-Peterson and Sips equations.The equilibrium data were then analyzed using five different non-linear error analysis methods.展开更多
Adsorption isotherm is the most fundamental information related to chromatography. To calculate the parameters of Langmuir ad-sorption isotherm of thymidine, frontal analysis (FA) and elution-curve method (ECM) were a...Adsorption isotherm is the most fundamental information related to chromatography. To calculate the parameters of Langmuir ad-sorption isotherm of thymidine, frontal analysis (FA) and elution-curve method (ECM) were adopted in reversed-phase high performance liguid chromatography (RP-HPLC). In FA, the concentration of stationary phase was measured from the elution curves and the isotherm was deter-mined by regression analysis, while the parameters by ECM were obtained by parameter optimization. The adsorption isotherms of thymidine from the two methods were very similar. The superiority of ECM over FA was that the consumption of sample was less and only one or two in-jections of sample were required.展开更多
With the increasing development of Brazil in recent years, major engineering construction works have been designed and built, partieutarly those involving large volumes of mass concrete, such as in the case of dams. M...With the increasing development of Brazil in recent years, major engineering construction works have been designed and built, partieutarly those involving large volumes of mass concrete, such as in the case of dams. Mass concrete, due to its large size and volume, presents a considerable temperature rise caused by cement grain hydration. This temperature rise can be sufficient to cause concrete crack and/or cracking, which may lead to serious problems. In this paper, we sought to study heat generation and temperature field in mass concrete through ANSYS software, which uses finite element method to analyze the problem. This program allows temperatures to be checked for different concrete ages. With that, it is possible to evaluate the temperatures obtained and the factors influencing the results in a short period of time at a low cost. With the help of the software, it is possible to check the temperatures for different concrete properties by analyzing them on different concreting days. Therefore, it was possible to establish that the properties of the concrete directly influence the temperature evolution phenomenon.展开更多
The isothermal precision forging was applied for the purpose of forming aluminum alloy with complex shape. The complexity of forging is easy to lead to the occurrence of the defects, such as underfilling, folding, met...The isothermal precision forging was applied for the purpose of forming aluminum alloy with complex shape. The complexity of forging is easy to lead to the occurrence of the defects, such as underfilling, folding, metal flow lines disturbance and fibre breaking. The reasons for the defects were analyzed on the basis of experiments and finite element method(FEM). The results show that the size of flash gutter bridge, the lubricating condition and the deformation process are the main factors influencing the filling qualities of complex-shape aluminum alloy forging. The folding defect is mainly caused by different velocities of filling cavities, fast flow of much metal in one direction and confluence of two or multi metal strands. Improper metal distribution in different regions can cause the flow lines disturbance and fast metal flow in one direction is also a cause of the flow lines disturbance. According to the reasons, some measures were taken to improve the quality of the forged parts.These studies can contribute to offering some experiences in making process project and optimizing the process parameters for forging complex-shape aviation products.展开更多
To eliminate the defects during piston skirt isothermal forming process,simulations under different process parameters such as the deformation temperature and friction factor were analyzed with the rigid-plastic FEA.D...To eliminate the defects during piston skirt isothermal forming process,simulations under different process parameters such as the deformation temperature and friction factor were analyzed with the rigid-plastic FEA.Deformation pattern,metal flow and influence of process parameters were concluded.The prediction load value with a relative error of 4.98% is more accurate to the testing one than that from the empirical formula whose relative error is up to 50.8%.Finally,based on the simulation results,an improved process at 300 ℃ and 0.005-0.05 s-1 was verified without any defects by the physical try-out.展开更多
The study of non-isothermal kinetics analyzed the reactivity of pine sawdust, while the thermodynamic properties analyzed energy consumed and released from the pine sawdust. The kinetic parameters were determined by a...The study of non-isothermal kinetics analyzed the reactivity of pine sawdust, while the thermodynamic properties analyzed energy consumed and released from the pine sawdust. The kinetic parameters were determined by analyzing mass loss of pine sawdust components by using Thermogravimeric analyzer. The cellulose has the highest conversion rate of 9.5%/min at 610 K compared to hemicellulose and lignin, which are 5%/min at 600 K and 2%/min at 800 K, respectively. The activation Energy for cellulose, hemicellulose and lignin was 457.644, 259.876, and 89.950 kJ/mol, respectively. The thermodynamic properties included the change of Gibbs free energy for cellulose and hemicellulose, which were -214.440 and -30.825 kJ/mol respectively, their degradation was spontaneous in forward direction, while change of Gibbs free energy for lignin was 207.507 kJ/mol, which is non-spontaneous reaction. The positive value of change of entropies for the active complex compounds formed from hemicellulose and cellulose is less stable, while the active complex compounds of lignin are characterized by a much higher degree of arrangement since its change of entropy is negative. The kinetic and thermodynamic properties show that pine sawdust is a good candidate for production of char since it is easier to remove hemicellulose through thermal process.展开更多
Guangdong Province in Southeast China is noted for its numerous geothermal resources due to tectonic episodes,mainly occurred during the Cretaceous.The surface heat flow and geothermal gradient are the most direct way...Guangdong Province in Southeast China is noted for its numerous geothermal resources due to tectonic episodes,mainly occurred during the Cretaceous.The surface heat flow and geothermal gradient are the most direct ways to understand the temperature of the Earth.However,geothermal resources are poorly utilized in Guangdong Province due to limited numbers of boreholes and surficial hydrothermal fluids.To improve the understanding of underground temperature distribution in Guangdong Province,we have applied power-density spectral analysis to aeromagnetic anomaly data to calculate the depth of the Curie isothermal surface.Upward continuation is applied and tested to the magnetic data.The calculated Curie isotherm is between 18.5 km and 25 km below surface.The fluctuation in the depth range reflects lateral thermal perturbations in the Guangdong crust.In particular,the eastern,northern,western and coastline areas of the province have a relatively shallow Curie isotherm.By comparing the surface heat flow,geothermal gradient,distribution of Mesozoic granite-volcanic rocks,and natural hot springs,we conclude that during Mesozoic,magmatism exerted great influence on the deep thermal state of Guangdong Province.A shallow Curie isotherm surface,as well as numerous natural hot springs and high heat flow,show clear signatures of shallow heat sources.展开更多
The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the i...The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.展开更多
Adsorption isotherm relates the gas storage capacity as a function of pressure at constant temperature.In this paper,adsorption isotherm of two dry borehole samples was constructed in the laboratory using the manometr...Adsorption isotherm relates the gas storage capacity as a function of pressure at constant temperature.In this paper,adsorption isotherm of two dry borehole samples was constructed in the laboratory using the manometric method.Isotherm was measured for two gases,i.e.,CH4 and CO2 to pressure up to 8.4 MPa.Before the construction of sorption isotherm,coal was characterized by proximate,ultimate and petrographic analysis.Coalbed gas content of these two samples was found 2.29 m3/t and 2.75 m3/t.SEM images were obtained for the pore size distribution of coal using pore image analysis.Prediction of coalbed methane recovery from CH4 adsorption isotherm showed that these coalbeds are under saturated.CO2 isotherm was constructed to estimate enhanced coalbed methane(ECBM)recovery.Volume wise CO2/CH4 sorption ratio was found 2.09 times to 2.75 times respectively.This paper presents the interpretation of isotherm data to find the recovery factor of methane production from Jharia coalfield.展开更多
Non-isothermal combustion kinetics of two kinds of low volatile pulverized coals (HL coal and RU coal) were investigated by thermogravimetrie analysis. The results show that the combustibility of HL coal was better ...Non-isothermal combustion kinetics of two kinds of low volatile pulverized coals (HL coal and RU coal) were investigated by thermogravimetrie analysis. The results show that the combustibility of HL coal was better than that of RU coal, and with increasing heating rate, ignition and burnout characteristics of pulverized coal were improved. The volume model (VM), the random pore model (RPM), and the new model (NEWM) in which the whole combustion process is considered to be the overlapping process of volatile combustion and coal char combustion, were used to fit with the experimental data. The comparison of these three fitted results indicated that the combustion process of coal could be simulated by the NEWM with highest precision. When calculated by the NEWM, the activation energies of volatile combustion and coal char combustion are 130.5 and 95.7 kJ · mol^-1 for HL coal, respectively, while they are 114.5 and 147.6 kJ ·mol^-1 for RU coal, respectively.展开更多
文摘Textile dyes are dramatic sources of pollution and non-aesthetic disturbance of aquatic life and therefore represent a potential risk of bioaccumulation that can affect living species.It is imperative to reduce or eliminate these dyes from liquid effluents with innovative biomaterials and methods.Therefore,this research aims to highlight the performance of Capparis spinosa L waste-activated carbon(CSLW-AC)adsorbent to remove crystal violet(CV)from an aqueous solution.The mechanism of CV adsorption on CSLW-AC was evaluated based on the coupling of experimental data and different characterization techniques.The efficiency of the CSLW-AC material reflected by the equilibrium adsorption capacity of CV could reach more than 195.671 mg·g^(–1) when 0.5 g·L^(–1) of CSLW-AC(Particle size≤250μm)is introduced into the CV of initial concentration of 100 mg·L^(–1) at pH 6 and temperature 65℃ and in the presence of potassium ions after 60 min of contact time according to the one parameter at a time studies.The adsorption behavior of CV on CSLW-AC was found to be consistent with the pseudo-second-order kinetic model and Frumkin's linear isothermal model.The thermodynamic aspects indicate that the process is physical,spontaneous,and endothermic.The optimization of the process by the Box Behnken design of experiments resulted in an adsorption capacity approaching 183.544 mg·g^(–1)([CV]=100 mg·L^(–1) and[CSLW-AC]=0.5 g·L^(–1) at 35 min).The results of the Lactuca sativa seeds germination in treated CV(70%),adsorbent solvent and thermal regeneration(more than 5 cycles),and process cost analysis(1.0484 USD·L^(–1))tests are encouraging and promising for future exploitations of the CSLW-AC material in different industrial fields.
基金Supported by the National Natural Science Foundation of China(21576036 and 21776035)
文摘In this paper, an efficient methodology for synthesizing the indirect work exchange networks(WEN) considering isothermal process and adiabatic process respectively based on transshipment model is first proposed. In contrast with superstructure method, the transshipment model is easier to obtain the minimum utility consumption taken as the objective function and more convenient for us to attain the optimal network configuration for further minimizing the number of units. Different from division of temperature intervals in heat exchange networks,different pressure intervals are gained according to the maximum compression/expansion ratio in consideration of operating principles of indirect work exchangers and the characteristics of no pressure constraints for stream matches. The presented approach for WEN synthesis is a linear programming model applied to the isothermal process, but for indirect work exchange networks with adiabatic process, a nonlinear programming model needs establishing. Additionally, temperatures should be regarded as decision variables limited to the range between inlet and outlet temperatures in each sub-network. The constructed transshipment model can be solved first to get the minimum utility consumption and further to determine the minimum number of units by merging the adjacent pressure intervals on the basis of the proposed merging methods, which is proved to be effective through exergy analysis at the level of units structures. Finally, two cases are calculated to confirm it is dramatically feasible and effective that the optimal WEN configuration can be gained by the proposed method.
文摘The thermal decompositions of Ca-bentonites (CaB) from Santai ,Shichuan Province, China over the temperature rage of 30-1100℃ were investigated by simultaneous thermal analyzer. Non-isothermal Kinetic analysis were employed to study the thermal decomposition mechanism by using Netzsch Thermokinetics software. The dependence of the activation energy on conversion degree were evaluated by isoconversional methods. The probably mechanism and the corresponding kinetic parameters were determined by multivariate non-linear regression program.
基金the support of the Research Grant Council of Hong Kong SARthe Innovation and Technology Fund of Hong Kong SAR+1 种基金the Hong Kong University of Science and TechnologyGreen Island International
文摘High surface area activated carbons were produced by thermal activation of waste bamboo scaffolding with phosphoric acid.Single component equilibrium dye adsorption was conducted on the carbons produced and compared with a commercially available carbon.Two acid dyes with different molecular sizes,namely Acid Yellow 117(AY117) and Acid Blue 25(AB25),were used to evaluate the adsorption capacity of the produced carbons.It was found that the dye with smaller molecular size,AB 25,was readily adsorbed onto the produced carbon,nearly three times higher than a commercially available carbon,while the larger size dye,AY117,showed little adsorption.The experimental data were analyzed using isotherm equations including Langmuir,Freundlich,Tempkin,Toth,Redlich-Peterson and Sips equations.The equilibrium data were then analyzed using five different non-linear error analysis methods.
文摘Adsorption isotherm is the most fundamental information related to chromatography. To calculate the parameters of Langmuir ad-sorption isotherm of thymidine, frontal analysis (FA) and elution-curve method (ECM) were adopted in reversed-phase high performance liguid chromatography (RP-HPLC). In FA, the concentration of stationary phase was measured from the elution curves and the isotherm was deter-mined by regression analysis, while the parameters by ECM were obtained by parameter optimization. The adsorption isotherms of thymidine from the two methods were very similar. The superiority of ECM over FA was that the consumption of sample was less and only one or two in-jections of sample were required.
文摘With the increasing development of Brazil in recent years, major engineering construction works have been designed and built, partieutarly those involving large volumes of mass concrete, such as in the case of dams. Mass concrete, due to its large size and volume, presents a considerable temperature rise caused by cement grain hydration. This temperature rise can be sufficient to cause concrete crack and/or cracking, which may lead to serious problems. In this paper, we sought to study heat generation and temperature field in mass concrete through ANSYS software, which uses finite element method to analyze the problem. This program allows temperatures to be checked for different concrete ages. With that, it is possible to evaluate the temperatures obtained and the factors influencing the results in a short period of time at a low cost. With the help of the software, it is possible to check the temperatures for different concrete properties by analyzing them on different concreting days. Therefore, it was possible to establish that the properties of the concrete directly influence the temperature evolution phenomenon.
文摘The isothermal precision forging was applied for the purpose of forming aluminum alloy with complex shape. The complexity of forging is easy to lead to the occurrence of the defects, such as underfilling, folding, metal flow lines disturbance and fibre breaking. The reasons for the defects were analyzed on the basis of experiments and finite element method(FEM). The results show that the size of flash gutter bridge, the lubricating condition and the deformation process are the main factors influencing the filling qualities of complex-shape aluminum alloy forging. The folding defect is mainly caused by different velocities of filling cavities, fast flow of much metal in one direction and confluence of two or multi metal strands. Improper metal distribution in different regions can cause the flow lines disturbance and fast metal flow in one direction is also a cause of the flow lines disturbance. According to the reasons, some measures were taken to improve the quality of the forged parts.These studies can contribute to offering some experiences in making process project and optimizing the process parameters for forging complex-shape aviation products.
文摘To eliminate the defects during piston skirt isothermal forming process,simulations under different process parameters such as the deformation temperature and friction factor were analyzed with the rigid-plastic FEA.Deformation pattern,metal flow and influence of process parameters were concluded.The prediction load value with a relative error of 4.98% is more accurate to the testing one than that from the empirical formula whose relative error is up to 50.8%.Finally,based on the simulation results,an improved process at 300 ℃ and 0.005-0.05 s-1 was verified without any defects by the physical try-out.
文摘The study of non-isothermal kinetics analyzed the reactivity of pine sawdust, while the thermodynamic properties analyzed energy consumed and released from the pine sawdust. The kinetic parameters were determined by analyzing mass loss of pine sawdust components by using Thermogravimeric analyzer. The cellulose has the highest conversion rate of 9.5%/min at 610 K compared to hemicellulose and lignin, which are 5%/min at 600 K and 2%/min at 800 K, respectively. The activation Energy for cellulose, hemicellulose and lignin was 457.644, 259.876, and 89.950 kJ/mol, respectively. The thermodynamic properties included the change of Gibbs free energy for cellulose and hemicellulose, which were -214.440 and -30.825 kJ/mol respectively, their degradation was spontaneous in forward direction, while change of Gibbs free energy for lignin was 207.507 kJ/mol, which is non-spontaneous reaction. The positive value of change of entropies for the active complex compounds formed from hemicellulose and cellulose is less stable, while the active complex compounds of lignin are characterized by a much higher degree of arrangement since its change of entropy is negative. The kinetic and thermodynamic properties show that pine sawdust is a good candidate for production of char since it is easier to remove hemicellulose through thermal process.
基金This research was supported by grant from the National Natural Science Foundation of China:Study of radioactive heat in the mantle with Geoneutrino(No.41874100).
文摘Guangdong Province in Southeast China is noted for its numerous geothermal resources due to tectonic episodes,mainly occurred during the Cretaceous.The surface heat flow and geothermal gradient are the most direct ways to understand the temperature of the Earth.However,geothermal resources are poorly utilized in Guangdong Province due to limited numbers of boreholes and surficial hydrothermal fluids.To improve the understanding of underground temperature distribution in Guangdong Province,we have applied power-density spectral analysis to aeromagnetic anomaly data to calculate the depth of the Curie isothermal surface.Upward continuation is applied and tested to the magnetic data.The calculated Curie isotherm is between 18.5 km and 25 km below surface.The fluctuation in the depth range reflects lateral thermal perturbations in the Guangdong crust.In particular,the eastern,northern,western and coastline areas of the province have a relatively shallow Curie isotherm.By comparing the surface heat flow,geothermal gradient,distribution of Mesozoic granite-volcanic rocks,and natural hot springs,we conclude that during Mesozoic,magmatism exerted great influence on the deep thermal state of Guangdong Province.A shallow Curie isotherm surface,as well as numerous natural hot springs and high heat flow,show clear signatures of shallow heat sources.
基金Projects(52175373,52005516)supported by the National Natural Science Foundation of ChinaProject(2018YFA0702800)supported by the National Key Basic Research Program,ChinaProject(ZZYJKT2021-03)supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,China。
文摘The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.
文摘Adsorption isotherm relates the gas storage capacity as a function of pressure at constant temperature.In this paper,adsorption isotherm of two dry borehole samples was constructed in the laboratory using the manometric method.Isotherm was measured for two gases,i.e.,CH4 and CO2 to pressure up to 8.4 MPa.Before the construction of sorption isotherm,coal was characterized by proximate,ultimate and petrographic analysis.Coalbed gas content of these two samples was found 2.29 m3/t and 2.75 m3/t.SEM images were obtained for the pore size distribution of coal using pore image analysis.Prediction of coalbed methane recovery from CH4 adsorption isotherm showed that these coalbeds are under saturated.CO2 isotherm was constructed to estimate enhanced coalbed methane(ECBM)recovery.Volume wise CO2/CH4 sorption ratio was found 2.09 times to 2.75 times respectively.This paper presents the interpretation of isotherm data to find the recovery factor of methane production from Jharia coalfield.
基金Item Sponsored by National Basic Research Program(973Program)of China(2012CB720401)National Key Technology Research and Development Program in the 12th Five-year Plan of China(2011BAC01B02)
文摘Non-isothermal combustion kinetics of two kinds of low volatile pulverized coals (HL coal and RU coal) were investigated by thermogravimetrie analysis. The results show that the combustibility of HL coal was better than that of RU coal, and with increasing heating rate, ignition and burnout characteristics of pulverized coal were improved. The volume model (VM), the random pore model (RPM), and the new model (NEWM) in which the whole combustion process is considered to be the overlapping process of volatile combustion and coal char combustion, were used to fit with the experimental data. The comparison of these three fitted results indicated that the combustion process of coal could be simulated by the NEWM with highest precision. When calculated by the NEWM, the activation energies of volatile combustion and coal char combustion are 130.5 and 95.7 kJ · mol^-1 for HL coal, respectively, while they are 114.5 and 147.6 kJ ·mol^-1 for RU coal, respectively.