期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Solving flexible job shop scheduling problem by a multi-swarm collaborative genetic algorithm 被引量:8
1
作者 WANG Cuiyu LI Yang LI Xinyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期261-271,共11页
The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborativ... The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborative optimization algorithm is proposed for the FJSP.Multi-population structure is used to independently evolve two sub-problems of the FJSP in the MSCGA.Good operators are adopted and designed to ensure this algorithm to achieve a good performance.Some famous FJSP benchmarks are chosen to evaluate the effectiveness of the MSCGA.The adaptability and superiority of the proposed method are demonstrated by comparing with other reported algorithms. 展开更多
关键词 flexible job shop scheduling problem(FJSP) collaborative genetic algorithm co-evolutionary algorithm
下载PDF
Clonal Selection Based Memetic Algorithm for Job Shop Scheduling Problems 被引量:4
2
作者 Jin-hui Yang Liang Sun +2 位作者 Heow Pueh Lee Yun Qian Yan-chun Liang 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第2期111-119,共9页
A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exp... A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exploration and exploitation. In the clonal selection mechanism, clonal selection, hypermutation and receptor edit theories are presented to construct an evolutionary searching mechanism which is used for exploration. In the local search mechanism, a simulated annealing local search algorithm based on Nowicki and Smutnicki's neighborhood is presented to exploit local optima. The proposed algorithm is examined using some well-known benchmark problems. Numerical results validate the effectiveness of the proposed algorithm. 展开更多
关键词 job shop scheduling problem clonal selection algorithm simulated annealing global search local search
下载PDF
Job shop scheduling problem based on DNA computing
3
作者 Yin Zhixiang Cui Jianzhong Yang Yan Ma Ying 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期654-659,共6页
To solve job shop scheduling problem, a new approach-DNA computing is used in solving job shop scheduling problem. The approach using DNA computing to solve job shop scheduling is divided into three stands. Finally, o... To solve job shop scheduling problem, a new approach-DNA computing is used in solving job shop scheduling problem. The approach using DNA computing to solve job shop scheduling is divided into three stands. Finally, optimum solutions are obtained by sequencing A small job shop scheduling problem is solved in DNA computing, and the "operations" of the computation were performed with standard protocols, as ligation, synthesis, electrophoresis etc. This work represents further evidence for the ability of DNA computing to solve NP-complete search problems. 展开更多
关键词 DNA computing job shop scheduling problem WEIGHTED tournament.
下载PDF
Cooperative-Guided Ant Colony Optimization with Knowledge Learning for Job Shop Scheduling Problem
4
作者 Wei Li Xiangfang Yan Ying Huang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1283-1299,共17页
With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing importance.The Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds... With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing importance.The Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds considerable theoretical research value.However,finding a satisfactory solution within a given time is difficult due to the NP-hard nature of the JSP.A co-operative-guided ant colony optimization algorithm with knowledge learning(namely KLCACO)is proposed to address this difficulty.This algorithm integrates a data-based swarm intelligence optimization algorithm with model-based JSP schedule knowledge.A solution construction scheme based on scheduling knowledge learning is proposed for KLCACO.The problem model and algorithm data are fused by merging scheduling and planning knowledge with individual scheme construction to enhance the quality of the generated individual solutions.A pheromone guidance mechanism,which is based on a collaborative machine strategy,is used to simplify information learning and the problem space by collaborating with different machine processing orders.Additionally,the KLCACO algorithm utilizes the classical neighborhood structure to optimize the solution,expanding the search space of the algorithm and accelerating its convergence.The KLCACO algorithm is compared with other highperformance intelligent optimization algorithms on four public benchmark datasets,comprising 48 benchmark test cases in total.The effectiveness of the proposed algorithm in addressing JSPs is validated,demonstrating the feasibility of the KLCACO algorithm for knowledge and data fusion in complex combinatorial optimization problems. 展开更多
关键词 Ant Colony Optimization(ACO) job shop scheduling problem(JSP) knowledge learning cooperative guidance
原文传递
Deep Reinforcement Learning Solves Job-shop Scheduling Problems
5
作者 Anjiang Cai Yangfan Yu Manman Zhao 《Instrumentation》 2024年第1期88-100,共13页
To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transfo... To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time. 展开更多
关键词 job shop scheduling problems deep reinforcement learning state characteristics policy network
原文传递
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
6
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
Applying Job Shop Scheduling to SMEs Manufacturing Platform to Revitalize B2B Relationship
7
作者 Yeonjee Choi Hyun Suk Hwang Chang Soo Kim 《Computers, Materials & Continua》 SCIE EI 2023年第3期4901-4916,共16页
A small and medium enterprises(SMEs)manufacturing platform aims to perform as a significant revenue to SMEs and vendors by providing scheduling and monitoring capabilities.The optimal job shop scheduling is generated ... A small and medium enterprises(SMEs)manufacturing platform aims to perform as a significant revenue to SMEs and vendors by providing scheduling and monitoring capabilities.The optimal job shop scheduling is generated by utilizing the scheduling system of the platform,and a minimum production time,i.e.,makespan decides whether the scheduling is optimal or not.This scheduling result allows manufacturers to achieve high productivity,energy savings,and customer satisfaction.Manufacturing in Industry 4.0 requires dynamic,uncertain,complex production environments,and customer-centered services.This paper proposes a novel method for solving the difficulties of the SMEs manufacturing by applying and implementing the job shop scheduling system on a SMEs manufacturing platform.The primary purpose of the SMEs manufacturing platform is to improve the B2B relationship between manufacturing companies and vendors.The platform also serves qualified and satisfactory production opportunities for buyers and producers by meeting two key factors:early delivery date and fulfillment of processing as many orders as possible.The genetic algorithm(GA)-based scheduling method results indicated that the proposed platform enables SME manufacturers to obtain optimized schedules by solving the job shop scheduling problem(JSSP)by comparing with the real-world data from a textile weaving factory in South Korea.The proposed platform will provide producers with an optimal production schedule,introduce new producers to buyers,and eventually foster relationships and mutual economic interests. 展开更多
关键词 Manufacturing platform job shop scheduling problem(JSSP) genetic algorithm optimization textile process
下载PDF
Modified bottleneck-based heuristic for large-scale job-shop scheduling problems with a single bottleneck 被引量:21
8
作者 Zuo Yan Gu Hanyu Xi Yugeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期556-565,共10页
A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. I... A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, the bottleneck is first scheduled optimally while the non-bottleneck machines are subordinated around the solutions of the bottleneck schedule by some effective dispatching rules. Computational results indicate that the MB heuristic can achieve a better tradeoff between solution quality and computational time compared to SB procedure for medium-size problems. Furthermore, it can obtain a good solution in a short time for large-scale jobshop scheduling problems. 展开更多
关键词 job shop scheduling problem BOTTLENECK shifting bottleneck procedure.
下载PDF
Emergency Local Searching Approach for Job Shop Scheduling 被引量:4
9
作者 ZHAO Ning CHEN Siyu DU Yanhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期918-927,共10页
Existing methods of local search mostly focus on how to reach optimal solution.However,in some emergency situations,search time is the hard constraint for job shop scheduling problem while optimal solution is not nece... Existing methods of local search mostly focus on how to reach optimal solution.However,in some emergency situations,search time is the hard constraint for job shop scheduling problem while optimal solution is not necessary.In this situation,the existing method of local search is not fast enough.This paper presents an emergency local search(ELS) approach which can reach feasible and nearly optimal solution in limited search time.The ELS approach is desirable for the aforementioned emergency situations where search time is limited and a nearly optimal solution is sufficient,which consists of three phases.Firstly,in order to reach a feasible and nearly optimal solution,infeasible solutions are repaired and a repair technique named group repair is proposed.Secondly,in order to save time,the amount of local search moves need to be reduced and this is achieved by a quickly search method named critical path search(CPS).Finally,CPS sometimes stops at a solution far from the optimal one.In order to jump out the search dilemma of CPS,a jump technique based on critical part is used to improve CPS.Furthermore,the schedule system based on ELS has been developed and experiments based on this system completed on the computer of Intel Pentium(R) 2.93 GHz.The experimental result shows that the optimal solutions of small scale instances are reached in 2 s,and the nearly optimal solutions of large scale instances are reached in 4 s.The proposed ELS approach can stably reach nearly optimal solutions with manageable search time,and can be applied on some emergency situations. 展开更多
关键词 emergency local search job shop scheduling problem SCHEDULE critical path critical constraint part
下载PDF
ANALYSIS AND IMPROVEMENT OF LEAD TIME FOR JOB SHOP UNDER MIXED PRODUCTION SYSTEM 被引量:1
10
作者 CHE Jianguo HE Zhen EDWARD M Knod 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期487-491,共5页
Firstly an overview of the potential impact on work-in-process (WIP) and lead time is provided when transfer lot sizes are undifferentiated from processing lot sizes. Simple performance examples are compared to thos... Firstly an overview of the potential impact on work-in-process (WIP) and lead time is provided when transfer lot sizes are undifferentiated from processing lot sizes. Simple performance examples are compared to those from a shop with one-piece transfer lots. Next, a mathematical programming model for minimizing lead time in the mixed-model job shop is presented, in which one-piece transfer lots are used. Key factors affecting lead time are found by analyzing the sum of the longest setup time of individual items among the shared processes (SLST) and the longest processing time of individual items among processes (LPT). And lead time can be minimized by cutting down the SLST and LPT. Reduction of the SLST is described as a traveling salesman problem (TSP), and the minimum of the SLST is solved through job shop scheduling. Removing the bottleneck and leveling the production line optimize the LPT. If the number of items produced is small, the routings are relatively short, and items and facilities are changed infrequently, the optimal schedule will remain valid. Finally a brief example serves to illustrate the method. 展开更多
关键词 Lead time Work-in-process(WIP) Mixed production system job shop scheduling problem Traveling salesman problem(TSP)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部