期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
集成KPCA与t‑SNE的滚动轴承故障特征提取方法
被引量:
17
1
作者
王望望
邓林峰
+1 位作者
赵荣珍
吴耀春
《振动工程学报》
EI
CSCD
北大核心
2021年第2期431-440,共10页
针对滚动轴承原始数据集包含高维非敏感特征的问题,提出一种集成核主成分分析(Kernel Principal Component Analysis,KPCA)与t‑分布随机邻域嵌入(t‑distributed Stochastic Neighbor Embedding,t‑SNE)的滚动轴承故障低维敏感特征提取方...
针对滚动轴承原始数据集包含高维非敏感特征的问题,提出一种集成核主成分分析(Kernel Principal Component Analysis,KPCA)与t‑分布随机邻域嵌入(t‑distributed Stochastic Neighbor Embedding,t‑SNE)的滚动轴承故障低维敏感特征提取方法。该方法先计算滚动轴承原始振动信号的时域、频域以及时频域特征,构建初始高维特征数据集。利用KPCA降低高维数据集的相关性,在最大化高维数据全局特征方差的目标下,提取出非线性特征子集。通过t‑SNE充分挖掘故障特征数据集的局部结构信息,进一步获取具有高判别性的低维敏感特征子集。将低维特征子集输入到k‑近邻分类器(k‑nearest Neighbor Classifier,KNNC)进行分类,以分类准确率和聚类结果作为度量指标,对特征提取结果的优劣予以评价。上述过程综合考虑了数据集的全局和局部结构特征,充分利用了数据自身的结构信息,从而可准确提取其低维敏感特征。将该方法用于滚动轴承故障诊断实验中,通过与其他典型特征提取方法进行对比,及其对含噪情况下轴承故障特征的准确提取,验证了方法的有效性。
展开更多
关键词
故障诊断
滚动轴承
故障特征提取
核主成分分析
t‑分布随机邻域嵌入
k‑近邻分类器
下载PDF
职称材料
题名
集成KPCA与t‑SNE的滚动轴承故障特征提取方法
被引量:
17
1
作者
王望望
邓林峰
赵荣珍
吴耀春
机构
兰州理工大学机电工程学院
出处
《振动工程学报》
EI
CSCD
北大核心
2021年第2期431-440,共10页
基金
国家自然科学基金资助项目(51675253)
中国博士后科学基金资助项目(2016M592857)
+1 种基金
甘肃省自然科学基金资助项目(1610RJZA004)
兰州理工大学红柳一流学科建设项目。
文摘
针对滚动轴承原始数据集包含高维非敏感特征的问题,提出一种集成核主成分分析(Kernel Principal Component Analysis,KPCA)与t‑分布随机邻域嵌入(t‑distributed Stochastic Neighbor Embedding,t‑SNE)的滚动轴承故障低维敏感特征提取方法。该方法先计算滚动轴承原始振动信号的时域、频域以及时频域特征,构建初始高维特征数据集。利用KPCA降低高维数据集的相关性,在最大化高维数据全局特征方差的目标下,提取出非线性特征子集。通过t‑SNE充分挖掘故障特征数据集的局部结构信息,进一步获取具有高判别性的低维敏感特征子集。将低维特征子集输入到k‑近邻分类器(k‑nearest Neighbor Classifier,KNNC)进行分类,以分类准确率和聚类结果作为度量指标,对特征提取结果的优劣予以评价。上述过程综合考虑了数据集的全局和局部结构特征,充分利用了数据自身的结构信息,从而可准确提取其低维敏感特征。将该方法用于滚动轴承故障诊断实验中,通过与其他典型特征提取方法进行对比,及其对含噪情况下轴承故障特征的准确提取,验证了方法的有效性。
关键词
故障诊断
滚动轴承
故障特征提取
核主成分分析
t‑分布随机邻域嵌入
k‑近邻分类器
Keywords
fault diagnosis
rolling bearing
fault feature extraction
k
ernel principal component analysis
t‑distribution stochastic neighbor embedding
k‑
nearest neighbor classifier
分类号
TH165.3 [机械工程—机械制造及自动化]
TH133.33 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
集成KPCA与t‑SNE的滚动轴承故障特征提取方法
王望望
邓林峰
赵荣珍
吴耀春
《振动工程学报》
EI
CSCD
北大核心
2021
17
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部