期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于k-sums分段聚类的动态组合学习光伏短期功率预测
1
作者
吴家葆
曾国辉
张振华
《电子科技》
2024年第4期69-76,共8页
目前单一模型预测精度存在难以随着功率波动保持最优的问题,为提高并网系统运行的稳定性和电网的节能调度,文中提出了一种基于k-sums分层聚类的动态学习组合光伏短期功率预测方法。利用k-sums算法经过分段聚类,将天气类型分为晴天A 1、...
目前单一模型预测精度存在难以随着功率波动保持最优的问题,为提高并网系统运行的稳定性和电网的节能调度,文中提出了一种基于k-sums分层聚类的动态学习组合光伏短期功率预测方法。利用k-sums算法经过分段聚类,将天气类型分为晴天A 1、多云A 2、阴雨天B。通过TCN(Temporal Convolutional Network)提取数据的时序特征,并结合GRU(Gate Recurrent Unit)建立融合提取时序特征模块的改进GRU结构,以达到对时序特征敏感的效果。将改进GRU结构与SVM(Support Vector Machine)动态组合,使用Elastic Net算法输出最佳权重值叠加得到最终预测值。文中采用江苏某地区的光伏发电功率数据及对应的气象数据对所提方法进行验证,结果表明动态组合学习模型的MAE(Mean Absolute Error)为1.888,RMSE(Root Mean Squared Error)为2.403。
展开更多
关键词
k-sums
分层聚类
TCN
改进GRU
SVM
动态组合学习
Elastic
Net
光伏短期功率预测
下载PDF
职称材料
题名
基于k-sums分段聚类的动态组合学习光伏短期功率预测
1
作者
吴家葆
曾国辉
张振华
机构
上海工程技术大学电子电气工程学院
出处
《电子科技》
2024年第4期69-76,共8页
基金
国家自然科学基金(61701296)。
文摘
目前单一模型预测精度存在难以随着功率波动保持最优的问题,为提高并网系统运行的稳定性和电网的节能调度,文中提出了一种基于k-sums分层聚类的动态学习组合光伏短期功率预测方法。利用k-sums算法经过分段聚类,将天气类型分为晴天A 1、多云A 2、阴雨天B。通过TCN(Temporal Convolutional Network)提取数据的时序特征,并结合GRU(Gate Recurrent Unit)建立融合提取时序特征模块的改进GRU结构,以达到对时序特征敏感的效果。将改进GRU结构与SVM(Support Vector Machine)动态组合,使用Elastic Net算法输出最佳权重值叠加得到最终预测值。文中采用江苏某地区的光伏发电功率数据及对应的气象数据对所提方法进行验证,结果表明动态组合学习模型的MAE(Mean Absolute Error)为1.888,RMSE(Root Mean Squared Error)为2.403。
关键词
k-sums
分层聚类
TCN
改进GRU
SVM
动态组合学习
Elastic
Net
光伏短期功率预测
Keywords
k-sums
hierarchical clustering
TCN
improve GRU
SVM
dynamic combination learning
Elastic Net
PV short-term power prediction
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于k-sums分段聚类的动态组合学习光伏短期功率预测
吴家葆
曾国辉
张振华
《电子科技》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部