期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Nuclear charge radius predictions by kernel ridge regression with odd-even effects
1
作者 Lu Tang Zhen-Hua Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期94-102,共9页
The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(... The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method. 展开更多
关键词 Nuclear charge radius Machine learning kernel ridge regression method
下载PDF
Examination of machine learning for assessing physical effects:Learning the relativistic continuum mass table with kernel ridge regression 被引量:1
2
作者 杜晓凯 郭鹏 +1 位作者 吴鑫辉 张双全 《Chinese Physics C》 SCIE CAS CSCD 2023年第7期138-150,共13页
The kernel ridge regression(KRR)method and its extension with odd-even effects(KRRoe)are used to learn the nuclear mass table obtained by the relativistic continuum Hartree-Bogoliubov theory.With respect to the bindin... The kernel ridge regression(KRR)method and its extension with odd-even effects(KRRoe)are used to learn the nuclear mass table obtained by the relativistic continuum Hartree-Bogoliubov theory.With respect to the binding energies of 9035 nuclei,the KRR method achieves a root-mean-square deviation of 0.96 MeV,and the KRRoe method remarkably reduces the deviation to 0.17 MeV.By investigating the shell effects,one-nucleon and twonucleon separation energies,odd-even mass differences,and empirical proton-neutron interactions extracted from the learned binding energies,the ability of the machine learning tool to grasp the known physics is discussed.It is found that the shell effects,evolutions of nucleon separation energies,and empirical proton-neutron interactions are well reproduced by both the KRR and KRRoe methods,although the odd-even mass differences can only be reproduced by the KRRoe method. 展开更多
关键词 machine learning kernel ridge regression relativistic continuum Hartree-Bogoliubov theory nuclear mass table
原文传递
Received signal strength based indoor positioning algorithm using advanced clustering and kernel ridge regression 被引量:4
3
作者 Yanfen LE Hena ZHANG +1 位作者 Weibin SHI Heng YAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2021年第6期827-838,共12页
We propose a novel indoor positioning algorithm based on the received signal strength(RSS) fingerprint. The proposed algorithm can be divided into three steps, an offline phase at which an advanced clustering(AC) stra... We propose a novel indoor positioning algorithm based on the received signal strength(RSS) fingerprint. The proposed algorithm can be divided into three steps, an offline phase at which an advanced clustering(AC) strategy is used, an online phase of approximate localization at which cluster matching is used, and an online phase of precise localization with kernel ridge regression. Specifically, after offline fingerprint collection and similarity measurement, we employ an AC strategy based on the K-medoids clustering algorithm using additional reference points that are geographically located at the outer cluster boundary to enrich the data of each cluster. During the approximate localization, RSS measurements are compared with the cluster radio maps to determine to which cluster the target most likely belongs. Both the Euclidean distance of the RSSs and the Hamming distance of the coverage vectors between the observations and training records are explored for cluster matching. Then, a kernel-based ridge regression method is used to obtain the ultimate positioning of the target. The performance of the proposed algorithm is evaluated in two typical indoor environments, and compared with those of state-of-the-art algorithms. The experimental results demonstrate the effectiveness and advantages of the proposed algorithm in terms of positioning accuracy and complexity. 展开更多
关键词 Indoor positioning Received signal strength(RSS)fingerprint kernel ridge regression Cluster matching Advanced clustering
原文传递
Application of kernel ridge regression in predicting neutron-capture reaction cross-sections 被引量:2
4
作者 T X Huang X H Wu P W Zhao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第9期98-104,共7页
This article provides the first application of the machine-learning approach in the study of the cross-sections for neutron-capture reactions with the kernel ridge regression(KRR)approach.It is found that the KRR appr... This article provides the first application of the machine-learning approach in the study of the cross-sections for neutron-capture reactions with the kernel ridge regression(KRR)approach.It is found that the KRR approach can reduce the root-mean-square(rms)deviation of the relative errors between the experimental data of the Maxwellian-averaged(n,γ)cross-sections and the corresponding theoretical predictions from 69.8%to 35.4%.By including the data with different temperatures in the training set,the rms deviation can be further significantly reduced to 2.0%.Moreover,the extrapolation performance of the KRR approach along different temperatures is found to be effective and reliable. 展开更多
关键词 kernel ridge regression machine learning neutron-capture reaction
原文传递
Optimal decoupling control system using kernel method
5
作者 全勇 杨杰 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期364-370,共7页
A major difficulty in multivariable control design is the cross-coupling between inputs and outputs which obscures the effects of a specific controller on the overall behavior of the system. This paper considers the a... A major difficulty in multivariable control design is the cross-coupling between inputs and outputs which obscures the effects of a specific controller on the overall behavior of the system. This paper considers the application of kernel method in decoupling multivariable output feedback controllers. Simulation results are presented to show the feasibility of the proposed technique. 展开更多
关键词 support vector regression kernel ridge regression DECOUPLING multivariable control systems.
下载PDF
Soft Sensing Modelling Based on Optimal Selection of Secondary Variables and Its Application 被引量:2
6
作者 Qi Li Cheng Shao 《International Journal of Automation and computing》 EI 2009年第4期379-384,共6页
The composition of the distillation column is a very important quality value in refineries, unfortunately, few hardware sensors are available on-line to measure the distillation compositions. In this paper, a novel me... The composition of the distillation column is a very important quality value in refineries, unfortunately, few hardware sensors are available on-line to measure the distillation compositions. In this paper, a novel method using sensitivity matrix analysis and kernel ridge regression (KRR) to implement on-line soft sensing of distillation compositions is proposed. In this approach, the sensitivity matrix analysis is presented to select the most suitable secondary variables to be used as the soft sensor's input. The KRR is used to build the composition soft sensor. Application to a simulated distillation column demonstrates the effectiveness of the method. 展开更多
关键词 Distillation column sensitivity matrix analysis ridge regression kernel ridge regression (KRR) soft sensor
下载PDF
Spider Monkey Optimization with Statistical Analysis for Robust Rainfall Prediction 被引量:1
7
作者 Mahmoud Ragab 《Computers, Materials & Continua》 SCIE EI 2022年第8期4143-4155,共13页
Rainfall prediction becomes popular in real time environment due to the developments of recent technologies.Accurate and fast rainfall predictive models can be designed by the use of machine learning(ML),statistical m... Rainfall prediction becomes popular in real time environment due to the developments of recent technologies.Accurate and fast rainfall predictive models can be designed by the use of machine learning(ML),statistical models,etc.Besides,feature selection approaches can be derived for eliminating the curse of dimensionality problems.In this aspect,this paper presents a novel chaotic spider money optimization with optimal kernel ridge regression(CSMO-OKRR)model for accurate rainfall prediction.The goal of the CSMO-OKRR technique is to properly predict the rainfall using the weather data.The proposed CSMO-OKRR technique encompasses three major processes namely feature selection,prediction,and parameter tuning.Initially,the CSMO algorithm is employed to derive a useful subset of features and reduce the computational complexity.In addition,the KRR model is used for the prediction of rainfall based on weather data.Lastly,the symbiotic organism search(SOS)algorithm is employed to properly tune the parameters involved in it.A series of simulations are performed to demonstrate the better performance of the CSMO-OKRR technique with respect to different measures.The simulation results reported the enhanced outcomes of the CSMO-OKRR technique with existing techniques. 展开更多
关键词 Rainfall prediction statistical techniques machine learning kernel ridge regression symbiotic organism search parameter tuning
下载PDF
A hybrid machine-learning model for solar irradiance forecasting 被引量:1
8
作者 Ameera M.Almarzooqi Maher Maalouf +3 位作者 Tarek H.M.El-Fouly Vasileios E.Katzourakis Mohamed S.El Moursi Constantinos V.Chrysikopoulos 《Clean Energy》 EI CSCD 2024年第1期100-110,共11页
Nowcasting and forecasting solar irradiance are vital for the optimal prediction of grid-connected solar photovoltaic(PV)power plants.These plants face operational challenges and scheduling dispatch difficulties due t... Nowcasting and forecasting solar irradiance are vital for the optimal prediction of grid-connected solar photovoltaic(PV)power plants.These plants face operational challenges and scheduling dispatch difficulties due to the fluctuating nature of their power output.As the generation capacity within the electric grid increases,accurately predicting this output becomes increasingly essential,especially given the random and non-linear characteristics of solar irradiance under variable weather conditions.This study presents a novel prediction method for solar irradiance,which is directly in correlation with PV power output,targeting both short-term and medium-term forecast horizons.Our proposed hybrid framework employs a fast trainable statistical learning technique based on the truncated-regularized kernel ridge regression model.The proposed method excels in forecasting solar irradiance,especially during highly intermittent weather periods.A key strength of our model is the incorporation of multiple historical weather parameters as inputs to generate accurate predictions of future solar irradiance values in its scalable framework.We evaluated the performance of our model using data sets from both cloudy and sunny days in Seattle and Medford,USA and compared it against three forecasting models:persistence,modified 24-hour persistence and least squares.Based on three widely accepted statistical performance metrics(root mean squared error,mean absolute error and coefficient of determination),our hybrid model demonstrated superior predictive accuracy in varying weather conditions and forecast horizons. 展开更多
关键词 solar power generation kernel ridge regression hybrid model forecasting
原文传递
Short Term Wind Speed Prediction Using Multiple Kernel Pseudo Inverse Neural Network 被引量:5
9
作者 S.P.Mishra P.K.Dash 《International Journal of Automation and computing》 EI CSCD 2018年第1期66-83,共18页
An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo i... An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo inverse neural networks eliminates the trial and error approach of choosing the number of hidden layer neurons and their activation functions. The robustness of the proposed method has been validated in comparison with other models such as pseudo inverse radial basis function (PIRBF) and Legendre tanh activation function based neural network, i.e., PILNNT, whose input weights to the hidden layer weights are optimized using an adaptive firefly algorithm, i.e., FFA. However, since the individual kernel functions based KRPINN may not be able to produce accurate forecasts under chaotically varying wind speed conditions, a linear combination of individual kernel functions is used to build the multi kernel ridge pseudo inverse neural network (MK-RPINN) for providing improved forecasting accuracy, generalization, and stability of the wind speed prediction model. Several case studies have been presented to validate the accuracy of the short-term wind speed prediction models using the real world wind speed data from a wind farm in the Wyoming State of USA over time horizons varying from 10 minutes to 5 hours. 展开更多
关键词 Wind speed prediction pseudo inverse neural network kernel ridge regression nonlinear kernels firefly optimizatiotl.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部