期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
A new discriminative sparse parameter classifier with iterative removal for face recognition
1
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
下载PDF
基于自适应矩阵的核联合稀疏表示高光谱图像分类
2
作者 陈善学 夏馨 《遥感信息》 CSCD 北大核心 2024年第2期19-27,共9页
针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像... 针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像素,充分融合了形状可变的空间信息与非线性光谱信息。在分类阶段,考虑自适应矩阵和高光谱图像非线性,采用对数欧式核函数,构建了核联合稀疏表示模型,以获得重构误差。同时利用字典空间信息构建了矩阵相关性,引入平衡参数实现了稀疏重构误差与矩阵相关性的联合分类。在两个数据集上的实验结果表明,该算法充分利用了高光谱图像的空间信息、光谱信息,能够有效提高分类精度。 展开更多
关键词 高光谱图像分类 核联合稀疏表示 自适应邻域块 自适应矩阵 矩阵相关性
下载PDF
联合核稀疏表示和增强字典的SAR目标识别方法
3
作者 李振汕 丁柏圆 《电光与控制》 CSCD 北大核心 2024年第8期44-49,共6页
为提高合成孔径雷达(SAR)图像目标识别性能,以传统稀疏表示分类(SRC)为基础,提出联合核稀疏表示分类(KSRC)和增强字典的方法。KSRC在SRC的基础上引入非线性核函数,从而提升分类器对于非线性数据关系的表征能力。增强字典在原始训练样本... 为提高合成孔径雷达(SAR)图像目标识别性能,以传统稀疏表示分类(SRC)为基础,提出联合核稀疏表示分类(KSRC)和增强字典的方法。KSRC在SRC的基础上引入非线性核函数,从而提升分类器对于非线性数据关系的表征能力。增强字典在原始训练样本的基础上,通过噪声添加和部分遮挡扩展原始字典,提升其对典型扩展操作条件的适应能力。同时,增强字典在KSRC的作用下,可以进一步提升对其他相关扩展操作条件的覆盖程度,从而提升识别方法对于多类扩展操作条件的有效性。以MSTAR数据集为基础开展实验,设置了标准操作条件以及噪声干扰、部分遮挡、型号差异等扩展操作条件,实验结果显示了本文方法的优势性能。 展开更多
关键词 合成孔径雷达 目标识别 核稀疏表示分类 增强字典 扩展操作条件
下载PDF
相关向量机及其在变压器故障诊断中的应用 被引量:22
4
作者 尹金良 朱永利 俞国勤 《电力自动化设备》 EI CSCD 北大核心 2012年第8期130-134,共5页
分析并用典型数据分类算例验证相关向量机(RVM)在分类性能方面优于支持向量机(SVM),在此基础上以标准化的变压器主要特征气体含量为输入量,采用二叉树的分类方法建立基于RVM的变压器故障诊断模型。实例分析表明,同基于SVM的故障诊断方... 分析并用典型数据分类算例验证相关向量机(RVM)在分类性能方面优于支持向量机(SVM),在此基础上以标准化的变压器主要特征气体含量为输入量,采用二叉树的分类方法建立基于RVM的变压器故障诊断模型。实例分析表明,同基于SVM的故障诊断方法相比,该方法可以取得与其相当甚至更优的故障诊断正确率,相关向量个数明显少于支持向量个数,诊断速度显著提高。 展开更多
关键词 相关向量机 稀疏贝叶斯 支持向量机 核函数 变压器 故障诊断 分类
下载PDF
一种基于稀疏编码的多核学习图像分类方法 被引量:31
5
作者 亓晓振 王庆 《电子学报》 EI CAS CSCD 北大核心 2012年第4期773-779,共7页
本文提出一种基于稀疏编码的多核学习图像分类方法.传统稀疏编码方法对图像进行分类时,损失了空间信息,本文采用对图像进行空间金字塔多划分方式为特征加入空间信息限制.在利用非线性SVM方法进行图像分类时,空间金字塔的各层分别形成一... 本文提出一种基于稀疏编码的多核学习图像分类方法.传统稀疏编码方法对图像进行分类时,损失了空间信息,本文采用对图像进行空间金字塔多划分方式为特征加入空间信息限制.在利用非线性SVM方法进行图像分类时,空间金字塔的各层分别形成一个核矩阵,本文使用多核学习方法求解各个核矩阵的权重,通过核矩阵的线性组合来获取能够对整个分类集区分能力最强的核矩阵.实验结果表明了本文所提出图像分类方法的有效性和鲁棒性.对Scene Categories场景数据集可以达到83.10%的分类准确率,这是当前该数据集上能达到的最高分类准确率. 展开更多
关键词 图像分类 多核学习 稀疏编码 空间金字塔
下载PDF
基于核拉普拉斯稀疏编码的图像分类 被引量:2
6
作者 张立和 潘磊 +1 位作者 刘涛 马臣 《大连理工大学学报》 EI CAS CSCD 北大核心 2015年第2期192-197,共6页
使用稀疏编码解决计算机视觉问题可以取得良好的效果.然而,以往的稀疏编码都是在原始特征空间进行.受核方法可以获得特征的高维非线性映射的启发,扩展了拉普拉斯稀疏编码(LSc),提出了核拉普拉斯稀疏编码(KLSc),它可以降低特征量化误差,... 使用稀疏编码解决计算机视觉问题可以取得良好的效果.然而,以往的稀疏编码都是在原始特征空间进行.受核方法可以获得特征的高维非线性映射的启发,扩展了拉普拉斯稀疏编码(LSc),提出了核拉普拉斯稀疏编码(KLSc),它可以降低特征量化误差,增强稀疏编码的性能.在3个标准数据集上的实验结果表明,所提出的基于KLSc的图像分类算法具有良好的分类效果,分类正确率优于LSc. 展开更多
关键词 图像分类 稀疏编码 拉普拉斯稀疏编码 核方法 空间金字塔匹配(SPM)
下载PDF
基于自适应核联合稀疏表示的多特征高光谱图像分类 被引量:3
7
作者 张会敏 杨明 吕静 《中国科学技术大学学报》 CAS CSCD 北大核心 2018年第4期298-306,共9页
稀疏表示已被证明是高光谱图像(HSI)分类中的有力工具,同时利用多种特征信息进行联合分类的优点在HSI图像分类领域受到关注,但多特征数据的稀疏策略以及数据的非线性是两个棘手的问题.为此提出了自适应稀疏模式的核联合稀疏模型对高光... 稀疏表示已被证明是高光谱图像(HSI)分类中的有力工具,同时利用多种特征信息进行联合分类的优点在HSI图像分类领域受到关注,但多特征数据的稀疏策略以及数据的非线性是两个棘手的问题.为此提出了自适应稀疏模式的核联合稀疏模型对高光谱图像进行分类.对于几个互补特征(梯度,文理和形状),该模型同时获取每种特征的表示向量,并且通过施加自适应稀疏策略ladaptive,0来有效利用多特征信息.自适应稀疏策略,不仅限制不同特征空间的像素通过来自特定类的原子表示,而且允许这些像素选定的原子不同,从而提供更好的表示方法.此外,提出的核联合稀疏表示模型用于处理数据的非线性问题.核模型将数据投影到高维空间以提高可分离性,实现比线性模型更好的性能.在数据集Indian Pines和University of Pavia的实验结果表明,所提出的算法表现出更高的分类精度. 展开更多
关键词 高光谱图像分类 联合稀疏表示 特征提取
下载PDF
基于核拉普拉斯稀疏编码模型的图像分类 被引量:3
8
作者 刘越 彭宏京 +1 位作者 钱素静 施炜 《模式识别与人工智能》 EI CSCD 北大核心 2014年第10期915-920,共6页
在稀疏词袋模型中,由于码书的过完备性,相似特征间稀疏编码存在多种组合方式,从而导致相似的特征可能得到完全不同的编码.文中提出基于核拉普拉斯稀疏编码的图像分类方法.该方法首先通过在高维核空间中构造核拉普拉斯矩阵以描述特征间... 在稀疏词袋模型中,由于码书的过完备性,相似特征间稀疏编码存在多种组合方式,从而导致相似的特征可能得到完全不同的编码.文中提出基于核拉普拉斯稀疏编码的图像分类方法.该方法首先通过在高维核空间中构造核拉普拉斯矩阵以描述特征间的几何依赖关系,使相似特征的稀疏编码的相似性尽可能得到保持.再采用交替固定码书与稀疏矩阵的方法优化目标函数进行码书学习,并采用符号猜测法对特征进行稀疏编码.最后用多类SVM分类器分类.实验证明文中方法可较大幅度降低量化误差,提高分类准确率,并在多个数据集上取得良好的测试效果. 展开更多
关键词 核方法 拉普拉斯矩阵 稀疏编码 图像分类
下载PDF
基于类独立核稀疏表示的鲁棒人脸识别 被引量:2
9
作者 王兰忠 赵鹏 +1 位作者 李成龙 钟凡 《计算机工程》 CAS CSCD 北大核心 2015年第8期202-206,共5页
针对人脸识别中光照变化、噪声干扰和遮挡等导致识别率下降的问题,提出类独立核稀疏表示的分类算法。利用冗余字典由多个子字典构成的特点,引入核技术用于提高人脸识别率。应用各类子字典和误差矩阵建立类独立核稀疏表示模型,借鉴正交... 针对人脸识别中光照变化、噪声干扰和遮挡等导致识别率下降的问题,提出类独立核稀疏表示的分类算法。利用冗余字典由多个子字典构成的特点,引入核技术用于提高人脸识别率。应用各类子字典和误差矩阵建立类独立核稀疏表示模型,借鉴正交匹配追踪算法思想提出类独立核正交匹配追踪算法,用于求解该模型得到各类的稀疏表示系数。将该系数结合各类子字典计算类相关重构误差,实现测试样本的分类识别。实验结果表明,相比同类算法,该算法具有较高的识别率,鲁棒性较好,能够有效抑制噪声、光照以及遮挡等干扰带来的负面影响。 展开更多
关键词 稀疏表示 核技术 人脸识别 正交匹配追踪 重构误差 分类
下载PDF
基于核稀疏分类与多尺度分块旋转扩展的鲁棒图像识别 被引量:3
10
作者 匡金骏 熊庆宇 柴毅 《模式识别与人工智能》 EI CSCD 北大核心 2013年第2期129-135,共7页
针对在图像旋转或局部扭曲变形等复杂情况下的图像识别问题,提出一种基于核稀疏分类与多尺度分块旋转扩展的鲁棒图像识别算法.该算法首先对图像进行多尺度分块与旋转扩展,使得字典能近似测试图像局部的旋转扭曲与各种排列组合.为了增加... 针对在图像旋转或局部扭曲变形等复杂情况下的图像识别问题,提出一种基于核稀疏分类与多尺度分块旋转扩展的鲁棒图像识别算法.该算法首先对图像进行多尺度分块与旋转扩展,使得字典能近似测试图像局部的旋转扭曲与各种排列组合.为了增加字典类间稀疏度,改善系统效率,提出一种字典降维策略.通过核随机坐标下降方法高效求解核稀疏分类的凸优化问题,进而通过对比不同类对测试图像的重构误差完成图像识别.实验表明,与经典方法相比,文中方法具有更好的识别效果,对图像旋转或局部扭曲变形等复杂情况具有较好的鲁棒性. 展开更多
关键词 核稀疏分类 多尺度分块旋转扩展 图像识别
下载PDF
基于CCA对LSSVM分类器的稀疏化 被引量:2
11
作者 陶少辉 陈德钊 胡望明 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第7期1093-1096,1118,共5页
为了对分类最小二乘支持向量机实施有效的稀疏化,以提高分类速率,采用分类相关分析算法,按序提取样本核矩阵的全部分类相关成分,并依据样本核矩阵各列与分类相关成分的相关性,对训练集所有个体按分类的重要性排序,进而可选取最重要的部... 为了对分类最小二乘支持向量机实施有效的稀疏化,以提高分类速率,采用分类相关分析算法,按序提取样本核矩阵的全部分类相关成分,并依据样本核矩阵各列与分类相关成分的相关性,对训练集所有个体按分类的重要性排序,进而可选取最重要的部分个体作为支持向量,并将其余非支持向量的信息转移至支持向量,以提高支持向量的分类表达能力.由此构建一种新的稀疏型最小二乘支持向量机CS-LSSVM,并将其应用于多个模式分类的实际问题.测试结果表明,CS-LSSVM稀疏性很强,且保持了标准LSSVM的分类性能,还可直接适用于多类问题. 展开更多
关键词 模式分类 最小二乘支持向量机 稀疏化 样本核矩阵 分类相关分析
下载PDF
带PCA卷积的稀疏表示图像分类算法 被引量:5
12
作者 魏明俊 许道云 徐梦珂 《计算机工程与应用》 CSCD 北大核心 2017年第14期155-160,共6页
针对不同卷积核可以提取不同的图像特征,而卷积核的训练比较困难这一问题,提出一种带主成分分析(PCA)卷积的稀疏表示分类算法。先对训练样本集做分片去均值化处理,然后直接应用PCA算法提取所有分片的前K个特征向量作为卷积核,再用这些... 针对不同卷积核可以提取不同的图像特征,而卷积核的训练比较困难这一问题,提出一种带主成分分析(PCA)卷积的稀疏表示分类算法。先对训练样本集做分片去均值化处理,然后直接应用PCA算法提取所有分片的前K个特征向量作为卷积核,再用这些卷积核对原始图像进行卷积操作;并提出一种自动加权策略,对卷积处理后得到的K个特征图像进行加权叠加操作;最后对特征图像进行分块直方图统计稀疏化,并应用稀疏表示分类算法进行分类。在公共人脸数据集AR、CMU Multi-PIE、ORL以及数字手写体数据集MNIST上与常用分类算法进行对比实验,实验结果表明,带PCA卷积的稀疏表示分类算法具有更高的分类准确率。 展开更多
关键词 稀疏表示 主成分分析卷积核 图像卷积 直方图统计 图像分类
下载PDF
应用一种多核稀疏表示模型实现掌纹分类 被引量:1
13
作者 尚丽 周燕 孙战里 《计量学报》 CSCD 北大核心 2021年第11期1430-1435,共6页
与稀疏表示(SR)模型相比,基于单个核函数的SR(KSR)模型可以有效减少数据维数、降低学习模型的计算复杂度并提高特征分类精度;但这种模型对核函数及其参数的选择通常不能包含恰当的、完整的分类信息。为了满足更高的特征分类精度需求,提... 与稀疏表示(SR)模型相比,基于单个核函数的SR(KSR)模型可以有效减少数据维数、降低学习模型的计算复杂度并提高特征分类精度;但这种模型对核函数及其参数的选择通常不能包含恰当的、完整的分类信息。为了满足更高的特征分类精度需求,提出了一种基于多个核函数的SR(M-KSR)模型及其快速稀疏优化方法,并将其应用于掌纹图像的分类。测试结果证明了基于M-KSR模型的掌纹分类方法的有效性和实用性。 展开更多
关键词 计量学 掌纹图像 稀疏表示 核稀疏表示 特征提取 特征分类
下载PDF
基于核函数的联合稀疏表示高光谱图像分类 被引量:10
14
作者 陈善学 周艳发 漆若兰 《系统工程与电子技术》 EI CSCD 北大核心 2018年第3期692-698,共7页
为了充分利用高光谱图像邻域像元间的相似性与独特性这一特征信息,提出了一种基于核函数的联合稀疏表示分类方法(kernel joint sparse representation classification,K-JSRC)来提高高光谱图像的分类精度。该方法通过一种改进的核函数... 为了充分利用高光谱图像邻域像元间的相似性与独特性这一特征信息,提出了一种基于核函数的联合稀疏表示分类方法(kernel joint sparse representation classification,K-JSRC)来提高高光谱图像的分类精度。该方法通过一种改进的核函数对每个待测中心像元的所有邻域像元自适应的予以不同权重来测量待测中心像元与邻域像元的相似度从而得到不规则的最优邻域窗口。在Indian Pines和University of Pavia两个高光谱数据集上的实验结果表明,提出的分类算法对高光谱图像进行了很好的分类并且其分类精度优于同类算法。 展开更多
关键词 高光谱图像分类 联合稀疏表示 核函数 权重 自适应
下载PDF
Volterra核优化的SRC人脸识别算法 被引量:1
15
作者 焦阳 赵嵩 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2022年第1期141-144,共4页
为了提高稀疏表示分类算法对属于同一方向不同类别样本的分类准确率,提出了一种基于Volterra核优化的稀疏表示分类算法。该算法首先将原始的人脸图像分成不重叠的小块,并利用Volterra核映射到高维空间。在训练阶段遵循费舍尔标准,根据... 为了提高稀疏表示分类算法对属于同一方向不同类别样本的分类准确率,提出了一种基于Volterra核优化的稀疏表示分类算法。该算法首先将原始的人脸图像分成不重叠的小块,并利用Volterra核映射到高维空间。在训练阶段遵循费舍尔标准,根据最大化类间距离和最小化类内距离来定义目标函数,从而获得优化Volterra核。与其他方法在ORL和YaleB标准数据集上进行对比实验,结果表明,采用Volterra核优化的SRC人脸识别分类方法在对样本的分类精度上提高了3%。 展开更多
关键词 人脸识别 VOLTERRA核 稀疏表示分类 分类方法
下载PDF
基于SVM的高维不平衡数据集分类算法 被引量:3
16
作者 赵小强 张露 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期452-461,共10页
由于数据量的不断增长,出现了大量的不平衡高维数据,传统的数据挖掘分类算法在处理这些数据时,易受到样本分布和维数的影响,存在分类性能不佳的问题.提出一种针对不平衡高维数据集的改进支持向量机(Supported Vector Machine,SVM)分类算... 由于数据量的不断增长,出现了大量的不平衡高维数据,传统的数据挖掘分类算法在处理这些数据时,易受到样本分布和维数的影响,存在分类性能不佳的问题.提出一种针对不平衡高维数据集的改进支持向量机(Supported Vector Machine,SVM)分类算法,首先通过核函数将数据集映射到特征空间中,再引入改进的核SMOTE(Kernel Synthetic Minority Over-sampling Technique)算法而得到正类样本,使两类样本数目平衡化;然后将维数高的数据集通过稀疏表示的方法投影到低维的空间中,实现降维;最后根据空间的距离关系来确定在输入空间中合成样本的原像,再对得到的平衡样本集通过SVM来分类,通过仿真实验验证了该算法对于高维不平衡数据集有较优的分类性能. 展开更多
关键词 高维不平衡数据集 分类算法 支持向量机(SVM) 核SMOTE 稀疏表示
下载PDF
遥感图像分类中的核稀疏字典学习 被引量:1
17
作者 邹劲松 黄凯锋 《计算机工程与设计》 北大核心 2016年第6期1584-1587,1658,共5页
为提高遥感高光谱影像分类的性能,提出基于核稀疏表示的字典学习算法。通过任务驱动的核函数表示,联合求解字典与分类器,得到遥感高光谱影像分类的最优解。采用随机梯度下降策略求解字典以及学习模型的参数,验证模型是全局可微分的,能... 为提高遥感高光谱影像分类的性能,提出基于核稀疏表示的字典学习算法。通过任务驱动的核函数表示,联合求解字典与分类器,得到遥感高光谱影像分类的最优解。采用随机梯度下降策略求解字典以及学习模型的参数,验证模型是全局可微分的,能通过随机梯度下降求得模型的最优参数。实验结果表明,该算法在多个遥感高光谱图像数据集上均具有较高的分类准确率和召回率。 展开更多
关键词 稀疏表示 字典学习 核函数 遥感图像 分类
下载PDF
加权融合核稀疏和协同表示的高光谱影像分类 被引量:4
18
作者 侯良国 向泽君 楚恒 《计算机工程与设计》 北大核心 2019年第4期1058-1063,共6页
为进一步提高表示分类器中基原子对测试样本的表达能力,提出一种加权融合核稀疏和协同表示的高光谱影像分类算法(WKSCRC)。充分利用核函数处理非线性数据的优势,将高光谱影像数据映射到高维核特征空间;对核稀疏表示系数和核协同表示系... 为进一步提高表示分类器中基原子对测试样本的表达能力,提出一种加权融合核稀疏和协同表示的高光谱影像分类算法(WKSCRC)。充分利用核函数处理非线性数据的优势,将高光谱影像数据映射到高维核特征空间;对核稀疏表示系数和核协同表示系数进行加权融合,在核融合表示系数下重构分类测试样本。在ROSIS和AVIRIS两个数据集上的仿真结果表明,该算法在精度与稳定性上优于其它传统分类算法。 展开更多
关键词 高光谱分类 稀疏表示 协同表示 核技巧 加权融合
下载PDF
联合核稀疏多元逻辑回归和TV-L1错误剔除的高光谱图像分类算法 被引量:9
19
作者 徐金环 沈煜 +1 位作者 刘鹏飞 肖亮 《电子学报》 EI CAS CSCD 北大核心 2018年第1期175-184,共10页
稀疏多元逻辑回归(SMLR)是高光谱监督分类中的重要方法,然而仅仅利用光谱信息的SMLR忽略了影像本身的空间特征,在少量监督样本下的分类精度和算法的鲁棒性仍明显不足;虽然通过引入核技巧,核稀疏多元逻辑回归(KSMLR)可以部分克服上述缺点... 稀疏多元逻辑回归(SMLR)是高光谱监督分类中的重要方法,然而仅仅利用光谱信息的SMLR忽略了影像本身的空间特征,在少量监督样本下的分类精度和算法的鲁棒性仍明显不足;虽然通过引入核技巧,核稀疏多元逻辑回归(KSMLR)可以部分克服上述缺点,其分类错误仍然有待进一步降低.本文基于核稀疏多元逻辑回归分类误差的统计建模分析,提出一种联合核稀疏多元逻辑回归和正则化错误剔除的高光谱图像分类模型.提出的模型通过引入隐概率场,采取L1范数度量KSMLR分类误差的重尾特性建立数据保真项;利用全变差(Total Variation,TV)正则化度量隐概率场的局部空间光滑性.由Indian Pines和University of Pavia数据集等实测数据应用表明,该方法可以得到更鲁棒和更高的分类精度. 展开更多
关键词 高光谱 图像分类 核稀疏多元逻辑回归 错误剔除
下载PDF
基于核字典学习的图像分类 被引量:1
20
作者 徐俊 李元祥 +1 位作者 Wei Xian 骆建华 《计算机应用研究》 CSCD 北大核心 2017年第12期3820-3824,共5页
航拍图像往往具有场景复杂、数据维度大的特点,对于该类图像的自动分类一直是研究的热点。针对航拍原始数据特征维度过高和数据线性不可分的问题,在字典学习和稀疏表示的基础上提出了一种结合核字典学习和线性鉴别分析的目标识别方法。... 航拍图像往往具有场景复杂、数据维度大的特点,对于该类图像的自动分类一直是研究的热点。针对航拍原始数据特征维度过高和数据线性不可分的问题,在字典学习和稀疏表示的基础上提出了一种结合核字典学习和线性鉴别分析的目标识别方法。首先学习核字典并通过核字典获取目标样本的稀疏表示,挖掘数据的内部结构;其次采用线性鉴别分析,加强稀疏表示的可分性;最后利用支持向量机对目标进行分类。实验结果表明,与传统基于子空间特征提取的算法和基于字典学习的算法相比,基于核字典学习与鉴别分析的算法分类性能优越。 展开更多
关键词 目标分类 稀疏表示 核字典学习 线性鉴别分析 支持向量机
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部