A new environmental friendly catalyst, H_4SiW_(12)O_(40)/PAn was prepared andidentified by means of FT-IR, XRD and TG/DTA. Cyclohexanone 1,2-propanediol ketal was synthesizedfrom cyclohexanone and 1,2-propanediol in t...A new environmental friendly catalyst, H_4SiW_(12)O_(40)/PAn was prepared andidentified by means of FT-IR, XRD and TG/DTA. Cyclohexanone 1,2-propanediol ketal was synthesizedfrom cyclohexanone and 1,2-propanediol in the presence of H_4SiW_(12)O_(40)/PAn The factorsinfluencing tlie synthesis were discussed and the best conditions were found out. The optimumconditions are: molar ratio of cyclohexanone to 1,2-propanediol is 1:1.4, the quantity of catalystis equal to 1.0 percent of feed stocks, and the reaction time is 40 min. H_4SiW_(12)O_(40)/PAn is anexcellent catalyst for synthesizing cyclohexanone 1,2-propanediol ketal and its yield can reachover 96.5 percent.展开更多
The ketalization of glycerol with acetone was conducted over an ionic liquid[P(C4H9)3C14H29][TsO](TTPT)in a batch reactor.A scheme to obtain the purified product using TTPT as a homogeneous catalyst is proposed and a ...The ketalization of glycerol with acetone was conducted over an ionic liquid[P(C4H9)3C14H29][TsO](TTPT)in a batch reactor.A scheme to obtain the purified product using TTPT as a homogeneous catalyst is proposed and a maximum solketal yield of 86%is achieved at acetone/glycerol molar ratio of 6/1,reaction time of 0.5 h,reaction temperature of 303 K,catalyst amount of 5 wt%of glycerol.TTPT was recycled and reused for ten times without obvious losses in terms of quantity and activity.Furthermore,effects of various experimental parameters(stirring speed,catalyst loadings,temperature and reactant composition)on the reaction kinetics are investigated.In terms of kinetics modeling,Kγis fitted by reactant composition at the temperature range 298 K–323 K,which was a concise strategy that showed good precision in the kinetics fitting.The activation energy for this ketalization reaction was evaluated to be 28.2 kJ·mol^-1.In addition,the kinetics of the reaction at a temperature exceeding the boiling point of acetone were also studied.We believe that all the results are important for further development of a technology for the continuous synthesis of solketal.展开更多
ABSTRACT A simple, economic, and time-efficient related substance, GC method has been developed for the analysis of 1,4-Cyclohexanedione mono- ethylene ketal(will be specified as ketal) in the presence of a potential ...ABSTRACT A simple, economic, and time-efficient related substance, GC method has been developed for the analysis of 1,4-Cyclohexanedione mono- ethylene ketal(will be specified as ketal) in the presence of a potential impurity 1,4-cyclohexa- nedione bis (ethylene ketal) [will be specified as diketal]. Successful chromatographic separa- tion of the ketal from the impurity was achieved on a DBWAX ETR, 30 m x 0.32 mm x 1.0μ FT column with nitrogen as carrier gas and FID detector. The method was validated for linearity, accuracy, precision, and specificity and can be used for quality control during manufacture of ketal. A validated GC method is reported for the ketal for the first time.展开更多
A new environmental friendly catalyst H3PW12O40/PAn was prepared and identified by means of FT-IR,XRD,and TG/DTA.The optimum conditions have been found;that is,the mass ratio of PAn to H3PW12O40 is 1:1.5,the volume o...A new environmental friendly catalyst H3PW12O40/PAn was prepared and identified by means of FT-IR,XRD,and TG/DTA.The optimum conditions have been found;that is,the mass ratio of PAn to H3PW12O40 is 1:1.5,the volume of methanol is 20 mL,and the reflux reaction time is 3 h.The structural identity of Keggin units is preserved after the incorporation into polyaniline matrix.Catalytic activities of H3PW12O40/PAn in synthesizing 2-methyl-2-ethoxycarbonylmethyl-1,3-dioxolane,2,4-dimethyl-2-ethoxycarbonylmethyl-1,3-dioxolane,cyclohexanone ethylene ketal,cyclohexanone 1,2-propanediol ketal,butanone ethylene ketal,butanone 1,2-propanediol ketal,2-phenyl-1,3-dioxolane,4-methyl-2-phenyl-1,3-dioxolane,2-propyl-1,3-dioxolane,and 4-methyl-2-propyl-1,3-dioxolane were reported.It has been demon-strated that H3PW12O40/PAn is an excellent catalyst.Various factors concerned in these reactions were investigated.The optimum conditions are as follows:the molar ratio of aldehyde/ketone to glycol(r) is 1:1.5,the mass ratio of the catalyst used to the reactants is 0.6%,and the reaction time is 1.0 h.Under these conditions,the yield is as follows:2-methyl-2-ethoxycarbonylmethyl-1,3-dioxolane,69.0%;2,4-dimethyl-2-ethoxycarbonylmethyl-1,3-dioxolane,79.5%;cyclohexanone ethylene ketal,78.9%;cyclohexanone 1,2-propanediol ketal,85.3%;butanone ethylene ketal,56.9%;butanone 1,2-propanediol ketal,78.1%;2-phenyl-1,3-dioxolane,76.3%;4-methyl-2-phenyl-1,3-dioxolane,94.2%;2-propyl-1,3-dioxolane,70.7%;and 4-methyl-2-propyl-1,3-dioxolane,79.2%.展开更多
Tungstophosphoric acid (HPW) catalyst supported on the neural alumina was studied. It was prepared by means of an equilibrium and incipient wetness impregnation technique. Solution of HPW in 50% V/V ethanol-water wa...Tungstophosphoric acid (HPW) catalyst supported on the neural alumina was studied. It was prepared by means of an equilibrium and incipient wetness impregnation technique. Solution of HPW in 50% V/V ethanol-water was used to impregnate Al2O3 at 25℃. It was found that the catalyst containing 30% PW by calcination at 500℃ showed a higher catalytic activity in the synthesis of acetals and/or ketals. In the following condition, that is, the molar ratio of aldehyde/ketone to glycol being 1:1.5, the mass fraction of the catalyst used was 0.5%, and the reaction time was 1.0 h; the yields of ketals and acetals could reach up to 60.5%-86.7%. Moreover, it could be easily recovered and reused.展开更多
Catalytic activity of activated carbon supported tungstosilicic acidin synthesizing 2-methyl-2-ethoxycarbonylmethyl- 1,3-dioxolane, 2,4-dimethyl-2-ethoxycarbonylmethyl-1,3-dioxolane, cyclohexanone ethylene ketal, cycl...Catalytic activity of activated carbon supported tungstosilicic acidin synthesizing 2-methyl-2-ethoxycarbonylmethyl- 1,3-dioxolane, 2,4-dimethyl-2-ethoxycarbonylmethyl-1,3-dioxolane, cyclohexanone ethylene ketal, cyclohexanone 1,2-propa- nediol ketal, butanone ethylene ketal, butanone 1,2-propanediol ketal, 2-phenyl-1,3-dioxolane, 4-methyl-2-phenyl-1,3-dioxolane, 2-propyl-1,3-dioxolane, 4-methyl-2-propyl-1,3-dioxolane was reported. It has been demonstrated that activated carbon supported tungstosilicic acid is an excellent catalyst. Various factors involved in these reactions were investigated. The optimum conditions found were: molar ratio of aldehyde/ketone to glycol is 1/1.5, mass ratio of the catalyst used to the reactants is 1.0%, and reaction time is 1.0 h. Under these conditions, the yield of 2-methyl-2-ethoxycarbonylmethyl-1,3-dioxolane is 61.5%, of 2,4-dimethyl- 2-ethoxycarbonylmethyl-1,3-dioxolane is 69.1%, of cyclohexanone ethylene ketal is 74.6%, of cyclohexanone 1,2-propanediol ketal is 80.1%, of butanone ethylene ketal is 69.5%, of butanone 1,2-propanediol ketal is 78.5%, of 2-phenyl-1,3-dioxolane is 56.7%, of 4-methyl-2-phenyl-1,3-dioxolane is 86.2%, of 2-propyl-1,3-dioxolane is 87.5%, of 4-methyl-2-propyl-1,3-dioxolane is 87.9%.展开更多
Twelve classes of acetals and ketals were synthesized from aldehyde/ketone and glycol using ZiSiW12O40/TiO2 as a novel eco-friendly catalyst. The physical characterizations were carried out by TG/DTA, FT-IR, XRD, and ...Twelve classes of acetals and ketals were synthesized from aldehyde/ketone and glycol using ZiSiW12O40/TiO2 as a novel eco-friendly catalyst. The physical characterizations were carried out by TG/DTA, FT-IR, XRD, and ^1H NMR spectra. The results indicated that the catalyst showed excellent catalytic activity for the condensation reactions. The yield of 12 classes of acetals and ketals reached 56.3%-96.3% under the typical reaction conditions (the molar ratio of aldehyde/ketone and glycol was 1:1.5, the quantity of catalyst was 0.5% of feed stock, the reaction time was 1.0 h, and the reaction temperature was 80-116℃). The catalyst was easily recovered and reused to give almost the same yield of the product as that given by fresh TiSiW12O10/TiO2.展开更多
A novel environmental friendly catalyst, H4SiW12O40/PAn was prepared and identified by FT-IR, XRD and TG/DTA. The optimal synthetic protocol was a PAn to H4SiW12O40 mass ratio of 1 : 1, a 20 mL of methanol and a reac...A novel environmental friendly catalyst, H4SiW12O40/PAn was prepared and identified by FT-IR, XRD and TG/DTA. The optimal synthetic protocol was a PAn to H4SiW12O40 mass ratio of 1 : 1, a 20 mL of methanol and a reaction time of 2 h at reflux. It was used in catalytic synthesis of ten important ketals and acetals with a high catalytic activity. With an aldehyde/ketone to glycol molar ratio of 1 : 1.5 and a 1 wt% catalyst loading, the yields of ketals and acetals could reach 60.0%- 93.8 % after 1 h.展开更多
A new environmental friendly catalyst, HaSiWrMo6O40/PAn was prepared and identified by means of FT-IR, XRD and TG/DTA. The optimum conditions have been found, that was, mass ratio of m(PAn): m(HaSiW6Mo6On.) was 1...A new environmental friendly catalyst, HaSiWrMo6O40/PAn was prepared and identified by means of FT-IR, XRD and TG/DTA. The optimum conditions have been found, that was, mass ratio of m(PAn): m(HaSiW6Mo6On.) was 1:1.25, volume of methanol was 20 mL, and the reflux reaction time was 2h. The structural identity of Keggin units was preserved after the incorporation into polyaniline matrix. H4SiW6Mo6040/PAn was used as catalyst in catalytic synthesis of acetals and ketals. Effects of n(aldehyde(ketone )): n(glycol), catalyst dosage and reaction time on yield were investingated. Optimal conditions were: n(aldehyde(ketone)): n(glycol)=1.0: 1.5; mass fraction of catalyst to reactants, 0.5%; reaction time, 1.0 h and cyclohexane as water-stripped reagent, 15 mL. Under these conditions, yields of actels and ketals were 31.9%-91.6%.展开更多
A new environmental friendly catalyst, H3PW6Mo6O40/TiO2 was prepared. The optimum conditions have been found, that is, mass ratio of m (TiO2): m (H3PW6Mo6O40) is 1:2.0, volume of water is 30 mL, the reflux react...A new environmental friendly catalyst, H3PW6Mo6O40/TiO2 was prepared. The optimum conditions have been found, that is, mass ratio of m (TiO2): m (H3PW6Mo6O40) is 1:2.0, volume of water is 30 mL, the reflux reaction time is 2 h, and activated temperature is 150 ℃. H3PW6Mo6O40/TiO2 was used as catalyst in catalytic synthesis ofacetals and ketals. Effects ofn (aldehyde(ketone)): n (glycol), catalyst dosage and reaction time on yield were investigated. Optimal conditions were: n(aldehyde (ketone)): n (glycol)=1.0 : 1.4; mass fraction of catalyst to reactants, 0.8%; reaction time, 1.0 h and cyclohexane as water-stripped reagent, 10 mL. Under these conditions, yields of acetals and ketals can reach 53.0% -86.9 0%展开更多
The acetalization of a series of carbonyl compounds with ethanediolwas performed over two self-steaxned HY zeolle catalpsts' The acetal and ketaiproducts were obtained with high ytelds Espectw, the HY zeollte with...The acetalization of a series of carbonyl compounds with ethanediolwas performed over two self-steaxned HY zeolle catalpsts' The acetal and ketaiproducts were obtained with high ytelds Espectw, the HY zeollte with highfraxnework Si/A1 ratio was proven to be suitable cataipst for the acetabotion ofunsaturated carbonyl compounds, during which the C =C double bond was notperturbed展开更多
A new method for aromatization of Δ^(5(10))-steroidal C_3-dimethyl ketals with pyridinium hydrobromide perbromide (PHP.Py·HBr·Br_2) to aromatic A ring steroids in high yield (90-95%) is described.
When the mixture of CpTiCl_3-KI is used, many acetals and ketals, which are difficuitly deprotected with CpTiCl_3 alone, can be easily converted to the corresponding carbonyl compounds in high yield at 30℃ in Et_2O.
A series of stable semi-ketals were obtained via the reactions of 3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)-2'-ketouridine 1 with primary alcohols. In the addition reaction,only a single diastereomer was...A series of stable semi-ketals were obtained via the reactions of 3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)-2'-ketouridine 1 with primary alcohols. In the addition reaction,only a single diastereomer was observed. The configuration of 3b was confirmed by X-raydiffraction.展开更多
The work herein reported is about a rapid and convenient synthetic method of a betal formed from ethylene glycol and cyclohexanone by using H3PW12O40(HPA)as catalyst. It has ben shown that the reaction, by using HPA a...The work herein reported is about a rapid and convenient synthetic method of a betal formed from ethylene glycol and cyclohexanone by using H3PW12O40(HPA)as catalyst. It has ben shown that the reaction, by using HPA as catalyst, can proceed at room temperature and have the high yield of 92% and the catalyst can be used again and again展开更多
In our study on the chemistry of ZrCl_4-NaBH_4,we have found that aldehydes and ketones can be regenerated from acetals and ketals at 30℃ in Et_2O in high yield The reaction mechanism was discussed.
Hierarchical core/shell Zeolite Socony Mobil-five(ZSM-5)zeolite was hydrothermally postsythesized in the solution of NaOH and diammonium surfactant via a dissolution-reassembly strategy.The silica and alumina species ...Hierarchical core/shell Zeolite Socony Mobil-five(ZSM-5)zeolite was hydrothermally postsythesized in the solution of NaOH and diammonium surfactant via a dissolution-reassembly strategy.The silica and alumina species were firstly dissolved partially from the bulky ZSM-5 crystals and then were reassembled into the MFI-type nanosheets with the structure-directing effect of diammonium surfactant,attaching to the out-surface of ZSM-5 core crystals.The mesopores thus were generated in both the core and shell part,giving rise to a micropore/mesopore composite material.The micropore volume and the acidity of the resultant hybrid were well-preserved during this recrystallization process.Possessing the multiple mesopores and enlarged external surface area,the core/shell ZSM-5 zeolite exhibited higher activity in the ketalation and acetalization reactions involving bulky molecules in comparison to the pristine ZSM-5.展开更多
文摘A new environmental friendly catalyst, H_4SiW_(12)O_(40)/PAn was prepared andidentified by means of FT-IR, XRD and TG/DTA. Cyclohexanone 1,2-propanediol ketal was synthesizedfrom cyclohexanone and 1,2-propanediol in the presence of H_4SiW_(12)O_(40)/PAn The factorsinfluencing tlie synthesis were discussed and the best conditions were found out. The optimumconditions are: molar ratio of cyclohexanone to 1,2-propanediol is 1:1.4, the quantity of catalystis equal to 1.0 percent of feed stocks, and the reaction time is 40 min. H_4SiW_(12)O_(40)/PAn is anexcellent catalyst for synthesizing cyclohexanone 1,2-propanediol ketal and its yield can reachover 96.5 percent.
基金the National Key Research and development Program of China(2017YFB0307302)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The ketalization of glycerol with acetone was conducted over an ionic liquid[P(C4H9)3C14H29][TsO](TTPT)in a batch reactor.A scheme to obtain the purified product using TTPT as a homogeneous catalyst is proposed and a maximum solketal yield of 86%is achieved at acetone/glycerol molar ratio of 6/1,reaction time of 0.5 h,reaction temperature of 303 K,catalyst amount of 5 wt%of glycerol.TTPT was recycled and reused for ten times without obvious losses in terms of quantity and activity.Furthermore,effects of various experimental parameters(stirring speed,catalyst loadings,temperature and reactant composition)on the reaction kinetics are investigated.In terms of kinetics modeling,Kγis fitted by reactant composition at the temperature range 298 K–323 K,which was a concise strategy that showed good precision in the kinetics fitting.The activation energy for this ketalization reaction was evaluated to be 28.2 kJ·mol^-1.In addition,the kinetics of the reaction at a temperature exceeding the boiling point of acetone were also studied.We believe that all the results are important for further development of a technology for the continuous synthesis of solketal.
文摘ABSTRACT A simple, economic, and time-efficient related substance, GC method has been developed for the analysis of 1,4-Cyclohexanedione mono- ethylene ketal(will be specified as ketal) in the presence of a potential impurity 1,4-cyclohexa- nedione bis (ethylene ketal) [will be specified as diketal]. Successful chromatographic separa- tion of the ketal from the impurity was achieved on a DBWAX ETR, 30 m x 0.32 mm x 1.0μ FT column with nitrogen as carrier gas and FID detector. The method was validated for linearity, accuracy, precision, and specificity and can be used for quality control during manufacture of ketal. A validated GC method is reported for the ketal for the first time.
基金supported by the Natural Science Foundation of Hubei Province,China(No.2005ABA053)Hubei Key Laboratory of Bioanalytical Technique,and the National Natural Science Foundation of China(No.20471044).
文摘A new environmental friendly catalyst H3PW12O40/PAn was prepared and identified by means of FT-IR,XRD,and TG/DTA.The optimum conditions have been found;that is,the mass ratio of PAn to H3PW12O40 is 1:1.5,the volume of methanol is 20 mL,and the reflux reaction time is 3 h.The structural identity of Keggin units is preserved after the incorporation into polyaniline matrix.Catalytic activities of H3PW12O40/PAn in synthesizing 2-methyl-2-ethoxycarbonylmethyl-1,3-dioxolane,2,4-dimethyl-2-ethoxycarbonylmethyl-1,3-dioxolane,cyclohexanone ethylene ketal,cyclohexanone 1,2-propanediol ketal,butanone ethylene ketal,butanone 1,2-propanediol ketal,2-phenyl-1,3-dioxolane,4-methyl-2-phenyl-1,3-dioxolane,2-propyl-1,3-dioxolane,and 4-methyl-2-propyl-1,3-dioxolane were reported.It has been demon-strated that H3PW12O40/PAn is an excellent catalyst.Various factors concerned in these reactions were investigated.The optimum conditions are as follows:the molar ratio of aldehyde/ketone to glycol(r) is 1:1.5,the mass ratio of the catalyst used to the reactants is 0.6%,and the reaction time is 1.0 h.Under these conditions,the yield is as follows:2-methyl-2-ethoxycarbonylmethyl-1,3-dioxolane,69.0%;2,4-dimethyl-2-ethoxycarbonylmethyl-1,3-dioxolane,79.5%;cyclohexanone ethylene ketal,78.9%;cyclohexanone 1,2-propanediol ketal,85.3%;butanone ethylene ketal,56.9%;butanone 1,2-propanediol ketal,78.1%;2-phenyl-1,3-dioxolane,76.3%;4-methyl-2-phenyl-1,3-dioxolane,94.2%;2-propyl-1,3-dioxolane,70.7%;and 4-methyl-2-propyl-1,3-dioxolane,79.2%.
基金This work was supported in part by the Combined Project between the Educational Commission and the Economic Com-mission of Gansu Province (No. 99CX-04)the Natural Science Foundation of Gansu Province (No. 3ZS041-A25-028),the Invention Project of Science & Technology, China (No. KJCXGC-01, NWNU).
文摘Tungstophosphoric acid (HPW) catalyst supported on the neural alumina was studied. It was prepared by means of an equilibrium and incipient wetness impregnation technique. Solution of HPW in 50% V/V ethanol-water was used to impregnate Al2O3 at 25℃. It was found that the catalyst containing 30% PW by calcination at 500℃ showed a higher catalytic activity in the synthesis of acetals and/or ketals. In the following condition, that is, the molar ratio of aldehyde/ketone to glycol being 1:1.5, the mass fraction of the catalyst used was 0.5%, and the reaction time was 1.0 h; the yields of ketals and acetals could reach up to 60.5%-86.7%. Moreover, it could be easily recovered and reused.
基金Project supported by the Natural Science Foundation of HubeiProvince Education Committee (No. 2004D007) and the NationalNatural Science Foundation of China (No. 20471044)
文摘Catalytic activity of activated carbon supported tungstosilicic acidin synthesizing 2-methyl-2-ethoxycarbonylmethyl- 1,3-dioxolane, 2,4-dimethyl-2-ethoxycarbonylmethyl-1,3-dioxolane, cyclohexanone ethylene ketal, cyclohexanone 1,2-propa- nediol ketal, butanone ethylene ketal, butanone 1,2-propanediol ketal, 2-phenyl-1,3-dioxolane, 4-methyl-2-phenyl-1,3-dioxolane, 2-propyl-1,3-dioxolane, 4-methyl-2-propyl-1,3-dioxolane was reported. It has been demonstrated that activated carbon supported tungstosilicic acid is an excellent catalyst. Various factors involved in these reactions were investigated. The optimum conditions found were: molar ratio of aldehyde/ketone to glycol is 1/1.5, mass ratio of the catalyst used to the reactants is 1.0%, and reaction time is 1.0 h. Under these conditions, the yield of 2-methyl-2-ethoxycarbonylmethyl-1,3-dioxolane is 61.5%, of 2,4-dimethyl- 2-ethoxycarbonylmethyl-1,3-dioxolane is 69.1%, of cyclohexanone ethylene ketal is 74.6%, of cyclohexanone 1,2-propanediol ketal is 80.1%, of butanone ethylene ketal is 69.5%, of butanone 1,2-propanediol ketal is 78.5%, of 2-phenyl-1,3-dioxolane is 56.7%, of 4-methyl-2-phenyl-1,3-dioxolane is 86.2%, of 2-propyl-1,3-dioxolane is 87.5%, of 4-methyl-2-propyl-1,3-dioxolane is 87.9%.
基金This work was financially supported by the Natural Science Foundation of Hubei Province, China (No. 2005ABA053) and the National Natural Science Foundation of China (No. 20471044).
文摘Twelve classes of acetals and ketals were synthesized from aldehyde/ketone and glycol using ZiSiW12O40/TiO2 as a novel eco-friendly catalyst. The physical characterizations were carried out by TG/DTA, FT-IR, XRD, and ^1H NMR spectra. The results indicated that the catalyst showed excellent catalytic activity for the condensation reactions. The yield of 12 classes of acetals and ketals reached 56.3%-96.3% under the typical reaction conditions (the molar ratio of aldehyde/ketone and glycol was 1:1.5, the quantity of catalyst was 0.5% of feed stock, the reaction time was 1.0 h, and the reaction temperature was 80-116℃). The catalyst was easily recovered and reused to give almost the same yield of the product as that given by fresh TiSiW12O10/TiO2.
基金Funded by the Natural Science Foundation of Hubei Province (No.2005ABA053)Hubei Key Laboratory of Pollutant Analysis & Reuse Technologythe National Natural Science Foundation of China (No. 20471044)
文摘A novel environmental friendly catalyst, H4SiW12O40/PAn was prepared and identified by FT-IR, XRD and TG/DTA. The optimal synthetic protocol was a PAn to H4SiW12O40 mass ratio of 1 : 1, a 20 mL of methanol and a reaction time of 2 h at reflux. It was used in catalytic synthesis of ten important ketals and acetals with a high catalytic activity. With an aldehyde/ketone to glycol molar ratio of 1 : 1.5 and a 1 wt% catalyst loading, the yields of ketals and acetals could reach 60.0%- 93.8 % after 1 h.
文摘A new environmental friendly catalyst, HaSiWrMo6O40/PAn was prepared and identified by means of FT-IR, XRD and TG/DTA. The optimum conditions have been found, that was, mass ratio of m(PAn): m(HaSiW6Mo6On.) was 1:1.25, volume of methanol was 20 mL, and the reflux reaction time was 2h. The structural identity of Keggin units was preserved after the incorporation into polyaniline matrix. H4SiW6Mo6040/PAn was used as catalyst in catalytic synthesis of acetals and ketals. Effects of n(aldehyde(ketone )): n(glycol), catalyst dosage and reaction time on yield were investingated. Optimal conditions were: n(aldehyde(ketone)): n(glycol)=1.0: 1.5; mass fraction of catalyst to reactants, 0.5%; reaction time, 1.0 h and cyclohexane as water-stripped reagent, 15 mL. Under these conditions, yields of actels and ketals were 31.9%-91.6%.
基金Acknowledgements: This work was financially supported by the Natural Science Foundation of Hubei Province, China (No. 2005ABA053) and the National Natural Science Foundation of China (No. 20471044).
文摘A new environmental friendly catalyst, H3PW6Mo6O40/TiO2 was prepared. The optimum conditions have been found, that is, mass ratio of m (TiO2): m (H3PW6Mo6O40) is 1:2.0, volume of water is 30 mL, the reflux reaction time is 2 h, and activated temperature is 150 ℃. H3PW6Mo6O40/TiO2 was used as catalyst in catalytic synthesis ofacetals and ketals. Effects ofn (aldehyde(ketone)): n (glycol), catalyst dosage and reaction time on yield were investigated. Optimal conditions were: n(aldehyde (ketone)): n (glycol)=1.0 : 1.4; mass fraction of catalyst to reactants, 0.8%; reaction time, 1.0 h and cyclohexane as water-stripped reagent, 10 mL. Under these conditions, yields of acetals and ketals can reach 53.0% -86.9 0%
文摘The acetalization of a series of carbonyl compounds with ethanediolwas performed over two self-steaxned HY zeolle catalpsts' The acetal and ketaiproducts were obtained with high ytelds Espectw, the HY zeollte with highfraxnework Si/A1 ratio was proven to be suitable cataipst for the acetabotion ofunsaturated carbonyl compounds, during which the C =C double bond was notperturbed
文摘A new method for aromatization of Δ^(5(10))-steroidal C_3-dimethyl ketals with pyridinium hydrobromide perbromide (PHP.Py·HBr·Br_2) to aromatic A ring steroids in high yield (90-95%) is described.
文摘When the mixture of CpTiCl_3-KI is used, many acetals and ketals, which are difficuitly deprotected with CpTiCl_3 alone, can be easily converted to the corresponding carbonyl compounds in high yield at 30℃ in Et_2O.
文摘A series of stable semi-ketals were obtained via the reactions of 3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)-2'-ketouridine 1 with primary alcohols. In the addition reaction,only a single diastereomer was observed. The configuration of 3b was confirmed by X-raydiffraction.
文摘The work herein reported is about a rapid and convenient synthetic method of a betal formed from ethylene glycol and cyclohexanone by using H3PW12O40(HPA)as catalyst. It has ben shown that the reaction, by using HPA as catalyst, can proceed at room temperature and have the high yield of 92% and the catalyst can be used again and again
文摘In our study on the chemistry of ZrCl_4-NaBH_4,we have found that aldehydes and ketones can be regenerated from acetals and ketals at 30℃ in Et_2O in high yield The reaction mechanism was discussed.
基金the financial support from Ministry of Science and Technology of China(Grant No.2016YFA0202804)the National Natural Science Foundation of China(Grant Nos.21872052,21533002,21571128 and 21603075).
文摘Hierarchical core/shell Zeolite Socony Mobil-five(ZSM-5)zeolite was hydrothermally postsythesized in the solution of NaOH and diammonium surfactant via a dissolution-reassembly strategy.The silica and alumina species were firstly dissolved partially from the bulky ZSM-5 crystals and then were reassembled into the MFI-type nanosheets with the structure-directing effect of diammonium surfactant,attaching to the out-surface of ZSM-5 core crystals.The mesopores thus were generated in both the core and shell part,giving rise to a micropore/mesopore composite material.The micropore volume and the acidity of the resultant hybrid were well-preserved during this recrystallization process.Possessing the multiple mesopores and enlarged external surface area,the core/shell ZSM-5 zeolite exhibited higher activity in the ketalation and acetalization reactions involving bulky molecules in comparison to the pristine ZSM-5.