期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas
1
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification kinematic analysis Slope stability Himalayan road Static and dynamic conditions
下载PDF
Influence of Kinematic Analysis Parameters of Drag Anchor Trajectory Prediction Using Yield Envelope Method
2
作者 WU Xiao-ni WANG Teng +1 位作者 LIAO Qian LI Ye 《China Ocean Engineering》 SCIE EI CSCD 2020年第2期257-266,共10页
Drag anchor is widely applied in offshore engineering for offshore mooring systems.The prediction of the invisible trajectory during its drag-in installation is challenging for anchor design in determining the anchor ... Drag anchor is widely applied in offshore engineering for offshore mooring systems.The prediction of the invisible trajectory during its drag-in installation is challenging for anchor design in determining the anchor final position for ensuring sufficient holding capacity.The yield envelope method based on deep anchor failure for kinematic analysis was proposed as a promising trajectory prediction method for drag anchor.However,there is a lack of analysis on the effects of the parameters applied in the kinematic analysis.The current work studies the effects of the yield envelope parameters,anchor line bearing capacity factor and the anchor/soil interface friction.It is found that the accuracy of the yield envelope parameters has large impact on the prediction results based on deep yield envelopes.Analyses of cases with smooth fluke predict deeper embedment depth than that from analyses of cases with rough fluke.The decrease of the capacity factor results in the increase of the anchor embedment depth,the anchor line load,the anchor chain angle and the stable value of the normalized horizontal load component for the same drag length,while the stable value of the normalized vertical load component decreases when the capacity factor decreases.This illustrates the importance in applying reasonable parameters and improving the method for more reliable prediction of the anchor trajectory. 展开更多
关键词 trajectory prediction kinematic analysis drag anchor yield envelope
下载PDF
Kinematic Analysis and Rock Mass Classifications for Rock Slope Failure at USAID Highways
3
作者 Ibnu Rusydy Nafisah Al-Huda +1 位作者 M.Fahmi Naufal Effendi 《Structural Durability & Health Monitoring》 EI 2019年第4期379-398,共20页
Rock slope kinematic analysis and rock mass classifications has been conducted at the 17^(th) km to 26^(th) km of USAID(United States Agency for International Development)highway in Indonesia.This research aimed to ex... Rock slope kinematic analysis and rock mass classifications has been conducted at the 17^(th) km to 26^(th) km of USAID(United States Agency for International Development)highway in Indonesia.This research aimed to examine the type of rock slope failures and the quality of rock mass as well.The scan-line method was performed in six slopes by using a geological compass to determine rock mass structure on the rock slope,and the condition of joints such as persistence,aperture,roughness,infilling material,weathering and groundwater conditions.Slope kinematic analysis was performed employing a stereographic projection.The rock slope quality and stability were investigated based on RMR(rock mass rating)and SMR(slope mass rating)parameters.The rock slope kinematic analysis revealed that planar failure was likely to occur in Slope 1,3,and 4,the wedge failure in Slope 1 and 6,and toppling failure in Slope 2,5,and 6.The RMR rating is ranging from 57 to 64 and can be categorized as Fair to Good rock.The SMR rating revealed that the failure probability of Slope 3 was 90%,while it was from 40%to 60%for others.Despite the uniform RMR for all slopes,the SMR was significantly different.The detailed quantitative consideration of orientation of joint sets and geometry of the slope contributed to such differences in outcomes. 展开更多
关键词 Engineering geology kinematic analysis rock mass classifications rock slope stability ACEH Indonesia
下载PDF
Kinematic,Workspace and Force Analysis of A Five-DOF Hybrid Manipulator R(2RPR)R/SP+RR
4
作者 Yundou Xu Fan Yang +3 位作者 Youen Mei Dongsheng Zhang Yulin Zhou Yongsheng Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期232-243,共12页
In the present study,the over-constrained hybrid manipulator R(2RPR)R/SP+RR is considered as the research objective.In this paper,kinematics of the hybrid manipulator,including the forward and inverse position,are ana... In the present study,the over-constrained hybrid manipulator R(2RPR)R/SP+RR is considered as the research objective.In this paper,kinematics of the hybrid manipulator,including the forward and inverse position,are analyzed.Then,the workspace is checked based on the inverse position solution to evaluate whether the workspace of the hybrid manipulator meets the requirements,and the actual workspace of the hybrid robot is analyzed.After that,the force analysis of the over-constrained parallel mechanism is carried out,and an ADAMS-ANSYS rigid-flexible hybrid body model is established to verify the simulation.Based on the obtained results from the force analysis,the manipulator structure is designed.Then,the structure optimization is carried out to improve the robot stiffness.Finally,calibration and workspace verification experiments are performed on the prototype,cutting experiment of an S-shaped aluminum alloy workpiece is completed,and the experiment verifies the machining ability of the prototype.This work conducts kinematics,workspace,force analyses,structural optimization design and experiments on the over-constrained hybrid manipulator R(2RPR)R/SP+RR,providing design basis and technical support for the development of the novel hybrid manipulator in practical engineering. 展开更多
关键词 Hybrid manipulator Over-constrained kinematic analysis Stiffness analysis
下载PDF
Complementary Methods to Acquire the Kinematics of Swimming Snakes:A Basis to Design Bio-inspired Robots
5
作者 Elie Gautreau Xavier Bonnet +4 位作者 Tom Fox Guillaume Fosseries Valéry Valle Anthony Herrel Med Amine Laribi 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第2期668-682,共15页
The vast diversity of morphologies,body size,and lifestyles of snakes represents an important source of information that can be used to derive bio-inspired robots through a biology-push and pull process.An understandi... The vast diversity of morphologies,body size,and lifestyles of snakes represents an important source of information that can be used to derive bio-inspired robots through a biology-push and pull process.An understanding of the detailed kinematics of swimming snakes is a fundamental prerequisite to conceive and design bio-inspired aquatic snake robots.However,only limited information is available on the kinematics of swimming snake.Fast and accurate methods are needed to fill this knowledge gap.In the present paper,three existing methods were compared to test their capacity to characterize the kinematics of swimming snakes.(1)Marker tracking(Deftac),(2)Markerless pose estimation(DeepLabCut),and(3)Motion capture were considered.(4)We also designed and tested an automatic video processing method.All methods provided different albeit complementary data sets;they also involved different technical issues in terms of experimental conditions,snake manipulation,or processing resources.Marker tracking provided accurate data that can be used to calibrate other methods.Motion capture posed technical difficulties but can provide limited 3D data.Markerless pose estimation required deep learning(thus time)but was efficient to extract the data under various experimental conditions.Finally,automatic video processing was particularly efficient to extract a wide range of data useful for both biology and robotics but required a specific experimental setting. 展开更多
关键词 Locomotion Image processing Motion capture kinematic analysis Snake robot Biomimicry DeepLabCut
下载PDF
Design and dynamic analysis of a scissors hoop-rib truss deployable antenna mechanism
6
作者 Bo Han Xiangkun Li +3 位作者 Jian Sun Yundou Xu Jiantao Yao Yongsheng Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期399-413,共15页
As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general par... As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general parallel mechanism.In this paper,an unequal-length scissors mechanism(ULSM)is proposed by changing the position of the internal rotational joint through a basic scissors mechanism.A scissors hoop-rib truss deployable antenna mechanism(SHRTDAM)is constructed by replacing the parabolic rib with the ULSM.Kinematic analysis of SHRTDAM is conducted,and the degree of freedom(DOF)of the whole antenna mechanism is analyzed based on screw theory,the result showed that it has only one DOF.Velocity and acceleration characteristics of SHRTDAM are obtained by the screw derivative and rotation transformation.Based on Lagrange equation,dynamic model of this mechanism is established,the torque required to drive the mechanism is simulated and verified by Adams and MATLAB software.In addition,a ground experiment prototype of 1.5-m diameter was fabricated and a deployment test is conducted,which demonstrated the mobility and deployment performance of the whole mechanism.The mechanism proposed in this paper can provide a good reference for the design and analysis of large aperture space deployable antennas. 展开更多
关键词 Scissors mechanism Deployable antenna Screw theory kinematic analysis Dynamic analysis
下载PDF
Generalized Kinematics Analysis of Hybrid Mechanisms Based on Screw Theory and Lie Groups Lie Algebras 被引量:2
7
作者 Peng Sun Yanbiao Li +3 位作者 Ke Chen Wentao Zhu Qi Zhong Bo Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第5期171-184,共14页
Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,acco... Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,according to the kinematics analysis of serial mechanisms,the basic principles of Lie groups and Lie algebras are briefly explained in dealing with the spatial switching and differential operations of screw vectors.Then,based on the standard ideas of Lie operations,the method for kinematics analysis of parallel mechanisms is derived,and Jacobian matrix and Hessian matrix are formulated recursively and in a closed form.Then,according to the mapping relationship between the parallel joints and corresponding equivalent series joints,a forward kinematics analysis method and two inverse kinematics analysis methods of hybrid mechanisms are examined.A case study is performed to verify the calculated matrices wherein a humanoid hybrid robotic arm with a parallel-series-parallel configuration is considered as an example.The results of a simulation experiment indicate that the obtained formulas are exact and the proposed method for kinematics analysis of hybrid mechanisms is practically feasible. 展开更多
关键词 Hybrid mechanism Screw theory Lie groups Lie algebras kinematics analysis Humanoid robotic arm
下载PDF
The Kinematics Analysis of Heald Selecting Mechanism of Rotary Electronic Dobby
8
作者 Hongbin Yu Xiangpeng Zhao +1 位作者 Honghuan Yin Hongyu Shao 《Open Journal of Applied Sciences》 2021年第1期93-102,共10页
In order to improve the reliability of the mechanical movement of the rotary electronic dobby, the kinematics analysis of the heald selection mechanism is carried out and the simulation is carried out with Matlab. Fir... In order to improve the reliability of the mechanical movement of the rotary electronic dobby, the kinematics analysis of the heald selection mechanism is carried out and the simulation is carried out with Matlab. Firstly, the operation mechanism of the heald selection mechanism is analyzed in detail. The conjugate cam is mapped. The cam profile curve is fitted with cubic spline interpolation. Secondly, based on the overall analysis method and the complex vector method, the kinematics analysis of the key components after the high pair low generation is performed, and the angular displacement and angular velocity of each component are calculated with the rotation of the active cam. Finally, the movement curve diagram is drawn with Matlab, which lays the foundation for the dynamic analysis and in-depth study of the selection mechanism in the future. 展开更多
关键词 Heald Selection Mechanism Substitute Equivalent Linkage Instead of Higher Pair Complex Number Vector Method The kinematics analysis
下载PDF
Design and Kinematics Analysis of Support Structure for Multi-Configuration Rigid-Flexible Coupled Modular Deployable Antenna
9
作者 TIAN Dake FAN Xiaodong +3 位作者 JIN Lu GUO Zhenwei GAO Haiming CHEN Hanting 《Aerospace China》 2021年第3期46-53,共8页
In order to meet the urgent need for diversified and multi-functional deployable antennas in many major national aerospace projects,such as interstellar exploration,the fourth phase of lunar exploration project,and th... In order to meet the urgent need for diversified and multi-functional deployable antennas in many major national aerospace projects,such as interstellar exploration,the fourth phase of lunar exploration project,and the industrial application of Bei Dou,a deployable antenna structure composed of hexagonal prism and pentagonal prism modules is proposed.Firstly,the arrangement and combination rules of pentagonal prism and hexagonal prism modules on the plane were analyzed.Secondly,the spatial geometric model of the deployable antenna composed of pentagonal prism and hexagonal prism modules was established.The influence of module size on the antenna shape was then analyzed,and the kinematic model of the deployable antenna established by coordinate transformation.Finally,the above model was verified using MATLAB software.The simulation results showed that the proposed modular deployable antenna structure can realize accurate connection between modules,complete the expected deployment and folding functional requirements.It is hoped that this research can provide reference for the basic research and engineering application of deployable antennas in China. 展开更多
关键词 space deployable antenna support structure rigid flexible coupling kinematics analysis numerical simulation
下载PDF
A Hyper-redundant Elephant’s Trunk Robot with an Open Structure:Design,Kinematics,Control and Prototype 被引量:3
10
作者 Yongjie Zhao Xiaogang Song +1 位作者 Xingwei Zhang Xinjian Lu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第6期158-176,共19页
As for the complex operational tasks in the unstructured environment with narrow workspace and numerous obstacles,the traditional robots cannot accomplish these mentioned complex operational tasks and meet the dexteri... As for the complex operational tasks in the unstructured environment with narrow workspace and numerous obstacles,the traditional robots cannot accomplish these mentioned complex operational tasks and meet the dexterity demands.The hyper-redundant bionic robots can complete complex tasks in the unstructured environments by simulating the motion characteristics of the elephant’s trunk and octopus tentacles.Compared with traditional robots,the hyper-redundant bionic robots can accomplish complex tasks because of their flexible structure.A hyper-redundant elephant’s trunk robot(HRETR)with an open structure is developed in this paper.The content includes mechanical structure design,kinematic analysis,virtual prototype simulation,control system design,and prototype building.This design is inspired by the flexible motion of an elephant’s trunk,which is expansible and is composed of six unit modules,namely,3UPS-PS parallel in series.First,the mechanical design of the HRETR is completed according to the motion characteristics of an elephant’s trunk and based on the principle of mechanical bionic design.After that,the backbone mode method is used to establish the kinematic model of the robot.The simulation software SolidWorks and ADAMS are combined to analyze the kinematic characteristics when the trajectory of the end moving platform of the robot is assigned.With the help of ANSYS,the static stiffness of each component and the whole robot is analyzed.On this basis,the materials of the weak parts of the mechanical structure and the hardware are selected reasonably.Next,the extensible structures of software and hardware control system are constructed according to the modular and hierarchical design criteria.Finally,the prototype is built and its performance is tested.The proposed research provides a method for the design and development for the hyper-redundant bionic robot. 展开更多
关键词 Hyper-redundant elephant's trunk robot Mechanical structure design kinematic analysis Virtual prototype simulation Control system Prototype building
下载PDF
An approach for determination of lateral limit angle in kinematic planar sliding analysis for rock slopes
11
作者 Xiaojuan Yang Jie Hu +1 位作者 Honglei Sun Jun Zheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2024年第4期1305-1314,共10页
Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar slid... Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one. 展开更多
关键词 kinematic analysis Block theory Planar sliding Lateral limit angle Rock slope
下载PDF
Rock Slope Stability Analysis by Using Integrated Approach
12
作者 Dyson Moses Hideki Shimada +3 位作者 Takashi Sasaoka Akihiro Hamanaka Tumelo K. Dintwe Sugeng Wahyudi 《World Journal of Engineering and Technology》 2020年第3期405-428,共24页
Slope stability assessment is an essential aspect of mining and civil engineering<span style="font-family:;" "=""><span style="font-family:Verdana;">. In this study, Song... Slope stability assessment is an essential aspect of mining and civil engineering<span style="font-family:;" "=""><span style="font-family:Verdana;">. In this study, Songwe open-pit mine in Malawi was investigated to establish possible pit slope instability. In performing the analysis, an integrated approach entailing rock mass characterisation, kinematic and numerical methods were applied. Based on rock mass classification system, Songwe Hill carbonatite rock mass is characterised as a good rock but still it possesses numerous random discontinuities that present a complex challenge in geotechnical engineering. Dip 6.0 software was used in carrying out kinematic analysis based on the attributes of discontinuities. The results show that there is a 16% likelihood of planar failure in the divided slope sections of the planned pit. Thus, slope angle optimisation to 41<span style="white-space:nowrap;">°</span> has been proposed as a counter-measure to minimise the potential risk of planar failure. At the optimised angle, the risk of planar failure could be reduced by 44%. On the other hand, wedge failure was found to be improbable since no joint intersections were found in the critical zone of potential failure. For numerical analysis, finite element code was applied using FLAC</span><sup><span style="font-size:12px;font-family:Verdana;">3D</span></sup><span style="font-family:Verdana;"> 5.0 application. The results demonstrate that </span></span><span style="font-family:Verdana;">overall slope angle of 41<span style="white-space:nowrap;">°</span> would offer a favourable balance between safety and mining economics as mining operations progress to deeper horizons thereby avoiding a </span><span style="font-family:Verdana;">costly push back solution due to instability.</span> 展开更多
关键词 Songwe Hill CARBONATITE kinematic analysis Numerical analysis Slope Stability
下载PDF
Engineering Geological and Geotechnical Studies of Taprang Landslide, West-central Nepal: An Approach for Slope Stability Analysis
13
作者 Ashok Sigdel Radha Krishna Adhikari 《Journal of Geological Research》 2020年第4期22-35,共14页
Detailed investigation of Taprang landslide was carried out in order tounderstand the surface, subsurface lithological information and physicalproperties of soil by using multi-disciplinary methods such as engineering... Detailed investigation of Taprang landslide was carried out in order tounderstand the surface, subsurface lithological information and physicalproperties of soil by using multi-disciplinary methods such as engineeringgeological, geophysical and geotechnical studies for the determinationof factor of safety for slope stability analysis. Geological study wascarried out by detail mapping of surface geology, soil condition, propertiesof bedrock and its discontinuities. The geophysical survey (ElectricalResistivity Tomography-ERT) were carried out to know the electricalresistivity of soil for identifying the groundwater table and slip surface ofthe landslide. Geotechnical analysis such as grain size analysis, liquid limitand direct shear test were carried out in order to evaluate soil classification,moisture content, cohesion and the angle of internal friction of soil forknowing the strength the soil. These soil parameters indicate the soil is verylow strength. The combination of these results were used for calculatingthe factor of safety (FoS) by Limit Equilibrium Method (LEM) proposedby Bishop and Janbu methods. The result of factor of safety in the Tapranglandslide demonstrates that the slope become stable in drained (dry)condition, remain ultimate stage in undrained (wet) condition and finallyfailure occurs if applied the seismic load in both drained and undrainedconditions. 展开更多
关键词 Taprang Landslide Electrical Resistivity Tomography(ERT) Groundwater Table Limit Equilibrium Method(LEM) Factor of Safety kinematic analysis Slope Stability
下载PDF
Numerical and Experimental Analysis of A Vertical-Axis Eccentric-disc Variable-Pitch Turbine(VEVT) 被引量:1
14
作者 CHEN Hai-long JING Feng-mei +3 位作者 LIU Heng-xu DING Hua-qiu KONG Fan-kai SHI Jian 《China Ocean Engineering》 SCIE EI CSCD 2020年第3期411-420,共10页
A combined experimental and numerical investigation is carried out to study the performance of a vertical-axis eccentric-disc variable-pitch turbine(VEVT).A scheme of eccentric disc pitch control mechanism based on do... A combined experimental and numerical investigation is carried out to study the performance of a vertical-axis eccentric-disc variable-pitch turbine(VEVT).A scheme of eccentric disc pitch control mechanism based on doubleblock mechanism is proposed.The eccentric control mechanism and the deflection angle control mechanism in the pitch control structure are designed and optimized according to the functional requirements of the turbine,and the three-dimensional model of the turbine is established.Kinematics analysis of the eccentric disc pitch control mechanism is carried out.Kinematics parameters and kinematics equations which can characterize its motion characteristics are derived.Kinematics analysis and simulation are carried out,and the motion law of the corresponding mechanical system is obtained.By analyzing the force and motion of blade of VEVT,the expressions of the important parameters such as deflection angle,attack angle and energy utilization coefficient are obtained.The lateral induced velocity coefficient is acquired by momentum theorem,the hydrodynamic parameters such as energy utilization coefficient are derived,and the hydrodynamic characteristics of VEVT are also obtained.The experimental results show that the turbine has good energy capture capability at different inflow velocities of different sizes and directions,which verifies that VEVT has good self-startup performance and high energy capture efficiency. 展开更多
关键词 vertical axis variable pitch turbine eccentric disc pitch control mechanism kinematics analysis hydraulic analysis flume experiment
下载PDF
Waders(Scolopacidae)surviving despite malaligned leg fractures in the wild:kinematics of bipedal locomotion
15
作者 Jessica Reichert Gerald Mayr +1 位作者 Thomas Wilke Winfried S.Peters 《Avian Research》 CSCD 2017年第3期168-175,共8页
Background: Bone fracture frequencies and survival rates are essential parameters in skeleton evolution, but information on the functional consequences of naturally healed fractures is scarce. No leg bone fracture hea... Background: Bone fracture frequencies and survival rates are essential parameters in skeleton evolution, but information on the functional consequences of naturally healed fractures is scarce. No leg bone fracture healing in the wild has been reported so far from long-legged Charadriiformes(waders), which depend on bipedal locomotion for feeding.Methods: We documented a healed but malaligned tarsometatarsus fracture in a wild Willet(Tringa [Catoptrophorus]semipalmata), and a malaligned tibiotarsus fracture in a Curlew(Numenius arquata) skeleton from a museum collection. Functional consequences of the malalignments were evaluated by kinematic analyses of videos(Willet) and in silico 3D modeling(Curlew).Results: The Willet's left tarsometatarsus exhibited an angular malalignment of 70°, resulting in a limping gait that was less pronounced at high than at low walking speed. The bird seemed unable to club the toes of the left foot together, apparently a secondary effect of the deformity. The Curlew's tibiotarsus showed an angular and an axial malalignment, causing the foot to rotate outwards when the intertarsal joint was flexed. Despite the severe effects of their injuries, the birds had survived at least long enough for the fractures to heal completely.Conclusions: Somewhat unexpectedly, leg fractures are not necessarily fatal in long-legged waders, even if deformities occur in the healing process. Bipedal locomotion on vegetated grounds must have been impeded due to the bone malalignments in both analyzed cases. The birds probably alleviated the impact of their handicaps by shifting a larger proportion of their activities to vegetation-free habitats. 展开更多
关键词 3D modeling Bone fracture healing Tringa(Catoptrophorus) semipalmata kinematic gait analysis Long bone malalignment Numenius arquata Scolopacidae
下载PDF
Design of A Novel Wheel-Legged Robot with Rim Shape Changeable Wheels
16
作者 Ze Fu Hao Xu +1 位作者 Yinghui Li Weizhong Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期62-72,共11页
The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-dir... The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-directional obstacle-crossing ability.During the motion,most of the wheel-legged robots’centroid fluctuates violently,which damages the stability of the load.What’s more,many designs of the obstacle-crossing part and transformation-driving part of this structure are highly coupled,which limits its optimal performance in both aspects.This paper presents a novel wheel-legged robot with a rim-shaped changeable wheel,which has a bi-directional and smooth obstacle-crossing ability.Based on the kinematic model,the geometric parameters of the wheel structure and the design variables of the driving four-bar mechanism are optimized separately.The kinetostatics model of the mobile platform when climbing stairs is established to determine the body length and angular velocity of the driving wheels.A pro-totype is made according to the optimal parameters.Experiments show that the prototype installed with the novel transformable wheels can overcome steps with a height of 1.52 times of its wheel radius with less fluctuation of its centroid and performs good locomotion capabilities in different environments. 展开更多
关键词 Mobile platform Transformable wheel-legged robot kinematics analysis Mechanical design OBSTACLE
下载PDF
Research on Piezoelectric Driving Microminiature Three-Legged Crawling Robot
17
作者 Zhongyuan Zheng Yanru Zhao Geng Wang 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第4期1481-1492,共12页
Micro-robots have the characteristics of small size,light weight and flexible movement.To design a micro three-legged crawling robot with multiple motion directions,a novel driving scheme based on the inverse piezoele... Micro-robots have the characteristics of small size,light weight and flexible movement.To design a micro three-legged crawling robot with multiple motion directions,a novel driving scheme based on the inverse piezoelectric effect of piezoelectric ceramics was proposed.The three legs of the robot were equipped with piezoelectric bimorphs as drivers,respectively.The motion principles were analyzed and the overall force analysis was carried out with the theoretical mechanics method.The natural frequency,mode shape and amplitude were analyzed with simulation software COMSOL Multiphysics,the optimal size was determined through parametric analysis,and then the micro three-legged crawling robot was manufactured.The effects of different driving voltages,different driving frequencies,different motion bases and different loads on the motion speed of the robot were tested.It is shown that the maximum speed of single-leg driving was 35.41 cm/s,the switching ability between different motion directions was measured,and the movements in six different directions were achieved.It is demonstrated the feasibility of multi-directional motion of the structure.The research may provide a reference for the design and development of miniature piezoelectric three-legged crawling robots. 展开更多
关键词 Three-legged crawling robot Piezoelectric drive Mechanical property analysis kinematic features analysis
下载PDF
Configuration and Kinematics of a 3-DOF Generalized Spherical Parallel Mechanism for Ankle Rehabilitation
18
作者 Jianjun Zhang Shuai Yang +2 位作者 Chenglei Liu Xiaohui Wang Shijie Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS 2024年第1期176-188,共13页
The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the hum... The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification. 展开更多
关键词 Ankle rehabilitation Parallel mechanism kinematic analysis Parameter optimization
下载PDF
Simulation of a Walking Robot-E xoskeleton Movement on a Movable Base
19
作者 Sergey Jatsun Andrei Malchikov +2 位作者 Andrey Yatsun AI Manji Khalil Andres Santiago Martinez Leon 《Journal of Artificial Intelligence and Technology》 2021年第4期207-213,共7页
The paper studies the problem of movement of a two-legged walking machine on a movable base.This task is relevant for design rehabilitation and mechanotherapy complexes for people with impaired functions of the muscul... The paper studies the problem of movement of a two-legged walking machine on a movable base.This task is relevant for design rehabilitation and mechanotherapy complexes for people with impaired functions of the musculoskeletal system and presents a mathematical model that allows obtaining the kinematic and dynamic parameters of the movement of the executive units of the device under study.The paper presents a method for planning the trajectory of exoskeleton links,its algorithmic and software implementation.The paper proposes the structure of the automatic link position control system,which ensures the movement of the executive links along a given trajectory.A mathematical apparatus is proposed for studying the dynamics of the controlled movement of the links of the human-machine system of the exoskeleton.The article presents the results of numerical.experiments on the movement of the low-limb exoskeleton leg in the one step mode and analyzes them. 展开更多
关键词 walking robot mathematical simulation kinematic analysis trajectory planning
下载PDF
Kinematics Analysis and Experiment of a Cockroach-Like Robot 被引量:1
20
作者 高勇 陈伟海 陆震 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第1期71-77,共7页
This article describes the structure of the cockroach-like robot.Both kinematics and locomotion control are inspired by biological observations in cockroaches.Based on cockroach-like robot kinematics analysis,screw th... This article describes the structure of the cockroach-like robot.Both kinematics and locomotion control are inspired by biological observations in cockroaches.Based on cockroach-like robot kinematics analysis,screw theory,and the production-of-exponential (POE) formula,this paper focuses on the inverse kinematics which uses Paden-Kahan sub-problems to obtain directly the displacement of joint angles.The forward kinematics derives the relationship between joint angles according to the natural restrictions.Then,by using the POE formula,it can deduce the body pose and realize online trajectory control and planning.Through simulation and experimentation,it is proved that the straight-line walking and turning gait algorithms have static stability and the inverse kinematics analysis of cockroach-like robot is correct. 展开更多
关键词 cockroach-like robot kinematics analysis locomotion control
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部