期刊文献+
共找到2,913篇文章
< 1 2 146 >
每页显示 20 50 100
Diagnosis of the Kinetic Energy of the“21·7”Extreme Torrential Rainfall Event in Henan Province,China
1
作者 Xiuping YAO Ruoying LI +1 位作者 Xiaohong BAO Qiaohua LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期73-83,共11页
An extreme torrential rain(ETR)event occurred in Henan Province,China,during 18-21 July 2021.Based on hourly rain-gauge observations and ERA5 reanalysis data,the ETR was studied from the perspective of kinetic energy(... An extreme torrential rain(ETR)event occurred in Henan Province,China,during 18-21 July 2021.Based on hourly rain-gauge observations and ERA5 reanalysis data,the ETR was studied from the perspective of kinetic energy(K),which can be divided into rotational wind(V_(R))kinetic energy(K_(R)),divergent wind kinetic energy(K_(D)),and the kinetic energy of the interaction between the divergent and rotational winds(K_(RD)).According to the hourly precipitation intensity variability,the ETR process was divided into an initial stage,a rapid increase stage,and maintenance stage.Results showed that the intensification and maintenance of ETR were closely related to the upper-level K,and most closely related to the upperlevel K_(R),with a correlation coefficient of up to 0.9.In particular,the peak value of hourly rainfall intensity lagged behind the K_(R) by 8 h.Furthermore,diagnosis showed that K transformation from unresolvable to resolvable scales made the ETR increase slowly.The meridional rotational wind(u_(R))and meridional gradient of the geopotential(φ)jointly determined the conversion of available potential energy(APE)to K_(R) through the barotropic process,which dominated the rapid enhancement of K_(R) and then caused the rapid increase in ETR.The transportation of K by rotational wind consumed K_(R),and basically offset the K_(R) produced by the barotropic process,which basically kept K_(R) stable at a high value,thus maintaining the ETR. 展开更多
关键词 extreme torrential rain rotational kinetic energy kinetic energy generation and transport barotropic process
下载PDF
Boosting kinetic separation of ethylene and ethane on microporous materials via crystal size control
2
作者 Yixuan Ma Cong Yu +5 位作者 Lifeng Yang Rimin You Yawen Bo Qihan Gong Huabin Xing Xili Cui 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期85-91,共7页
The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C... The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C_(2)H_(6)brings challenges to the regulation of adsorbents to realize efficient dynamic separation.Herein,we reported the enhancement of the kinetic separation of C_(2)H_(4)/C_(2)H_(6)by controlling the crystal size of ZnAtzPO_(4)(Atz=3-amino-1,2,4-triazole)to amplify the diffusion difference of C_(2)H_(4)and C_(2)H_(6).Through adjusting the synthesis temperature,reactant concentration,and ligands/metal ions molar ratio,ZnAtzPO4 crystals with different sizes were obtained.Both single-component kinetic adsorption tests and binary-component dynamic breakthrough experiments confirmed the enhancement of the dynamic separation of C_(2)H_(4)/C_(2)H_(6)with the increase in the crystal size of ZnAtzPO_(4).The separation selectivity of C_(2)H_(4)/C_(2)H_(6)increased from 1.3 to 98.5 with the increase in the crystal size of ZnAtzPO_(4).This work demonstrated the role of morphology and size control of adsorbent crystals in the improvement of the C_(2)H_(4)/C_(2)H_(6)kinetic separation performance. 展开更多
关键词 ADSORPTION ADSORBENT ETHYLENE Binary mixture Crystal size control kinetic separation
下载PDF
A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium–Sulfur Batteries
3
作者 Liping Chen Guiqiang Cao +8 位作者 Yong Li Guannan Zu Ruixian Duan Yang Bai Kaiyu Xue Yonghong Fu Yunhua Xu Juan Wang Xifei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期300-332,共33页
Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review f... Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries. 展开更多
关键词 Lithium–sulfur battery Redox kinetic Transition metal compounds catalyst Multiple metals/anions
下载PDF
All‑Covalent Organic Framework Nanofilms Assembled Lithium‑Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics
4
作者 Xiaoyang Xu Jia Zhang +6 位作者 Zihao Zhang Guandan Lu Wei Cao Ning Wang Yunmeng Xia Qingliang Feng Shanlin Qiao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期246-260,共15页
Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca... Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices. 展开更多
关键词 Covalent organic frameworks Lithium-ion capacitor Charge storage kinetic
下载PDF
Geochemical modeling to aid experimental design for multiple isotope tracer studies of coupled dissolution and precipitation reaction kinetics
5
作者 Mingkun Chen Peng Lu +1 位作者 Yongchen Song Chen Zhu 《Acta Geochimica》 EI CAS CSCD 2024年第1期1-15,共15页
It is a challenge to make thorough but efficient experimental designs for the coupled mineral dissolution and precipitation studies in a multi-mineral system, because it is difficult to speculate the best experimental... It is a challenge to make thorough but efficient experimental designs for the coupled mineral dissolution and precipitation studies in a multi-mineral system, because it is difficult to speculate the best experimental duration, optimal sampling schedule, effects of different experimental conditions, and how to maximize the experimental outputs prior to the actual experiments. Geochemical modeling is an efficient and effective tool to assist the experimental design by virtually running all scenarios of interest for the studied system and predicting the experimental outcomes. Here we demonstrated an example of geochemical modeling assisted experimental design of coupled labradorite dissolution and calcite and clayey mineral precipitation using multiple isotope tracers. In this study, labradorite(plagioclase) was chosen as the reactant because it is both a major component and one of the most reactive minerals in basalt. Following our isotope doping studies of single minerals in the last ten years, initial solutions in the simulations were doped withmultiple isotopes(e.g., Ca and Si). Geochemical modeling results show that the use of isotope tracers gives us orders of magnitude more sensitivity than the conventional method based on concentrations and allows us to decouple dissolution and precipitation reactions at near-equilibrium condition. The simulations suggest that the precise unidirectional dissolution rates can inform us which rate laws plagioclase dissolution has followed. Calcite precipitation occurred at near-equilibrium and the multiple isotope tracer experiments would provide near-equilibrium precipitation rates, which was a challenge for the conventional concentration-based experiments. In addition, whether the precipitation of clayey phases is the rate-limiting step in some multi-mineral systems will be revealed. Overall, the modeling results of multimineral reaction kinetics will improve the understanding of the coupled dissolution–precipitation in the multi-mineral systems and the quality of geochemical modeling prediction of CO_(2) removal and storage efficacy in the basalt systems. 展开更多
关键词 kinetics FELDSPAR Isotope doping Near-equilibrium CO_(2)sequestration BASALT
下载PDF
“Buckets effect”in the kinetics of electrocatalytic reactions
6
作者 Haowen Cui Yan-Xia Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期388-396,I0010,共10页
In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbo... In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbolic relationship,i.e.,the ORR current excluding the effect of other variables increases with proton concentration and then tends to a constant value.We consider that this is caused by the limitation of ORR kinetics by the trace oxygen concentration in the solution,which determines the upper limit of ORR kinetics.A model of effective concentration is further proposed for rectangular hyperbolic relationships:when the reactant concentration is high enough to reach a critical saturation concentration,the effective reactant concentration will become a constant value.This could be due to the limited concentration of a certain reactant for reactions involving more than one reactant or the limited number of active sites available on the catalyst.Our study provides new insights into the kinetics of electrocatalytic reactions,and it is important for the proper evaluation of catalyst activity and the study of structureperformance relationships. 展开更多
关键词 Oxygen reduction reaction kineticS Zero order Rectangular hyperbolic relationship pH effect
下载PDF
Dual-single-atoms of Pt-Co boost sulfur redox kinetics for ultrafast Li-S batteries
7
作者 Hanyan Wu Xuejie Gao +7 位作者 Xinyang Chen Weihan Li Junjie Li Lei Zhang Yang Zhao Ming Jiang Runcang Sun Xueliang Sun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期53-63,共11页
Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetic... Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetics,the sulfur redox kinetics for Li-S batteries is still not ultrafast.Herein,in this work,a catalyst with dual-single-atom Pt-Co embedded in N-doped carbon nanotubes(Pt&Co@NCNT)was proposed by the atomic layer deposition method to suppress the shuttle effect and synergistically improve the interconversion kinetics from polysulfides to Li_(2)S.The X-ray absorption near edge curves indicated the reversible conversion of Li_(2)Sx on the S/Pt&Co@NCNT electrode.Meanwhile,density functional theory demonstrated that the Pt&Co@NCNT promoted the free energy of the phase transition of sulfur species and reduced the oxidative decomposition energy of Li_(2)S.As a result,the batteries assembled with S/Pt&Co@NCNT electrodes exhibited a high capacity retention of 80%at 100 cycles at a current density of 1.3 mA cm^(−2)(S loading:2.5 mg cm^(−2)).More importantly,an excellent rate performance was achieved with a high capacity of 822.1 mAh g^(−1) at a high current density of 12.7 mA cm^(−2).This work opens a new direction to boost the sulfur redox kinetics for ultrafast Li-S batteries. 展开更多
关键词 DFT calculation dual-single-atoms of Pt-Co fast Li-sulfur batteries sulfur redox kinetics XANES analysis
下载PDF
Atomic Ni directional-substitution on ZnIn_(2)S_(4) nanosheet to achieve the equilibrium of elevated redox capacity and efficient carrier-kinetics performance in photocatalysis
8
作者 Haibin Huang Guiyang Yu +5 位作者 Xingze Zhao Boce Cui Jinshi Yu Chenyang Zhao Heyuan Liu Xiyou Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期272-281,I0007,共11页
It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced ... It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion. 展开更多
关键词 ZnIn_(2)S_(4) SUBSTITUTION Carrier kinetics Redox capacity PHOTOCATALYSIS
下载PDF
Catalytic Reaction Kinetics of Propylene Dimerization to 4-Methyl-1-Pentene Using Cu-K/K_(2)CO_(3) Solid Base Catalyst
9
作者 Jin Haibo Chai Jing +3 位作者 Yang Suohe He Guangxiang Ma Lei Guo Xiaoyan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期78-87,共10页
The catalysis technology of propylene dimerization to form 4-methyl-1-pentene(4MP1)using a Cu-K/K_(2)CO_(3) solid base catalyst is a well-known heterogeneous catalytic reaction.In this study,the intrinsic kinetics of ... The catalysis technology of propylene dimerization to form 4-methyl-1-pentene(4MP1)using a Cu-K/K_(2)CO_(3) solid base catalyst is a well-known heterogeneous catalytic reaction.In this study,the intrinsic kinetics of propylene dimerization were studied in a fixed-bed continuous reactor.Internal and external diffusion during the dimerization reaction experiments were eliminated by adjusting the flow rate of the carrier gas and the particle size of the catalyst support.Then,the concentration changes of each substance at the outlet of the catalyst bed under different residence times were investigated.Moreover,the suitable reaction kinetics equations was derived using the Langmuir Hinshelwood-Hougen-Watson kinetic model.Finally,the activation energy for each reaction involved in the dimerization reaction was calculated.The activation energies of 4MP1,branched by-products,and 1-hexene were 115.0,150.8,and 177.4 kJ/mol,respectively.The effect of process conditions on propylene dimerization with solid base catalysts was studied through kinetic model simulation.By comparing the theoretical values obtained from the simulation with the experimental results,the applicability and accuracy of the kinetic model were verified. 展开更多
关键词 propylene dimerization 4-methyl-1-pentene intrinsic kinetics surface reaction
下载PDF
Recent progress in thermodynamic and kinetics modification of magnesium hydride hydrogen storage materials
10
作者 Yafei Liu Yusang Guo +3 位作者 Yaru Jiang Lizhuang Feng Yu Sun Yijing Wang 《Materials Reports(Energy)》 EI 2024年第1期3-22,共20页
Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen... Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen energy lies in the development of high-performance hydrogen storage materials.Magnesium-based hydrogen storage materials exhibit remarkable advantages,including high hydrogen storage density,cost-effectiveness,and abundant magnesium resources,making them highly promising for the hydrogen energy sector.Nonetheless,practical applications of magnesium hydride for hydrogen storage face significant challenges,primarily due to their slow kinetics and stable thermodynamic properties.Herein,we briefly summarize the thermodynamic and kinetic properties of MgH2,encompassing strategies such as alloying,nanoscaling,catalyst doping,and composite system construction to enhance its hydrogen storage performance.Notably,nanoscaling and catalyst doping have emerged as more effective modification strategies.The discussion focuses on the thermodynamic changes induced by nanoscaling and the kinetic enhancements resulting from catalyst doping.Particular emphasis lies in the synergistic improvement strategy of incorporating nanocatalysts with confinement materials,and we revisit typical works on the multi-strategy optimization of MgH2.In conclusion,we conduct an analysis of outstanding challenges and issues,followed by presenting future research and development prospects for MgH2 as hydrogen storage materials. 展开更多
关键词 Magnesium hydride Thermodynamics and kinetics Catalyst doping NANOSTRUCTURES Hydrogenation and dehydrogenation
下载PDF
Improved hydrogen storage kinetics of MgH_(2) using TiFe_(0.92)Mn_(0.04)Co_(0.04) with in-situ generated α-Fe as catalyst
11
作者 Zefeng Li Yangfan Lu +3 位作者 Jingfeng Wang Yu'an Chen Qian Li Fushen Pan 《Materials Reports(Energy)》 EI 2024年第1期95-103,共9页
While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction... While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction kinetics.Herein,we report that the TiFe_(0.92)Mn_(0.04)Co_(0.04) catalyst can overcome the abovementioned challenges.The synthesized MgH_(2)-30 wt% TiFe_(0.92)Mn_(0.04)Co_(0.04) can release 4.5 wt%of hydrogen in 16 min at 250℃,three times as fast as MgH_(2).The activation energy of dehydrogenation was as low as 84.6 kJ mol^(-1),which is 46.8%reduced from pure MgH_(2).No clear degradation of reaction rates and hydrogen storage capacity was observed for at least 30 cycles.Structural studies reveal that TiFe_(0.92)Mn_(0.04)Co_(0.04) partially decomposes to in-situ generatedα-Fe particles dispersed on TiFe_(0.92)Mn_(0.04)Co_(0.04).The presence ofα-Fe reduces the formation of an oxide layer on TiFe_(0.92)Mn_(0.04)Co_(0.04),enabling the activation processes.At the same time,the hydrogen incorporation capabilities of TiFe_(0.92)Mn_(0.04)Co_(0.04) can provide more hydrogen diffusion paths,which promote hydrogen dissociation and diffusion.These discoveries demonstrate the advanced nature and importance of combining the in-situ generatedα-Fe with TiFe_(0.92)Mn_(0.04)Co_(0.04).It provides a new strategy for designing highly efficient and stable catalysts for Mg-based hydrogen storage materials. 展开更多
关键词 Hydrogen storage materials MAGNESIUM De/hydrogenation kinetics CATALYST
下载PDF
Thermal Decomposition of Olive-Solid Waste by TGA: Characterization and Devolatilization Kinetics under Nitrogen and Oxygen Atmospheres
12
作者 Yahya H. Khraisha 《Journal of Power and Energy Engineering》 2024年第3期31-47,共17页
Despite the fact that a few countries in the Mediterranean and the Middle East have limited crude oil reserves, they have abundant biomass feedstocks. For instance, Jordan relies heavily on the importation of natural ... Despite the fact that a few countries in the Mediterranean and the Middle East have limited crude oil reserves, they have abundant biomass feedstocks. For instance, Jordan relies heavily on the importation of natural gas and crude oil for its energy needs;but, by applying thermochemical conversion techniques, leftover olive oil can be used to replace these energy sources. Understanding the chemical, physical, and thermal characteristics of raw materials is essential to obtaining the most out of these conversion processes. Thermogravimetric analysis was used in this study to examine the thermal behavior of olive-solid residue (kernel) at three different heating rates (5, 20 and 40 C/min) in nitrogen and oxygen atmospheres. The initial degradation temperature, the residual weight at 500 and 700˚C and the thermal degradation rate during the devolatilization stage (below 400˚C) were all determined. It was found that in N<sub>2</sub> and O<sub>2</sub> atmospheres, both the initial degradation temperature and the degradation rate increase with increasing heating rates. As heating rates increase in the N<sub>2</sub> atmosphere, the residual weight at 500 or 700˚C decreases slightly, but at low heating rates compared to high heating rates in the O<sub>2</sub> atmosphere, it decreases significantly. This suggests that a longer lignin oxidation process is better than a shorter one. Coats and Redfern approach was used to identify the mechanism and activation energy for the devolatilization stage of pyrolysis and oxidation reactions. The process mechanism analysis revealed that the model of first-order and second-order reactions may adequately describe the mechanism of heat degradation of the devolatilization step of olive-solid waste for pyrolysis and oxidation processes, respectively. 展开更多
关键词 Biomass Olive-Solid Waste THERMOGRAVIMETRY Pyrolysis Oxidation Heating Rates kinetics
下载PDF
Optimization of Methylene Blue Dye Adsorption onto Coconut Husk Cellulose Using Response Surface Methodology: Adsorption Kinetics, Isotherms and Reusability Studies
13
作者 Frank Ouru Omwoyo Geoffrey Otieno 《Journal of Materials Science and Chemical Engineering》 2024年第2期1-18,共18页
In this study, coconut husk cellulose was employed as a cost-effective and environmentally friendly adsorbent to eliminate methylene blue (MB) dye from aqueous solutions. The successful development of response surface... In this study, coconut husk cellulose was employed as a cost-effective and environmentally friendly adsorbent to eliminate methylene blue (MB) dye from aqueous solutions. The successful development of response surface methodology paired with a central composite design (RSM-CCD) enabled the optimization and modelling of the adsorption process. The study investigated the individual and combined effects of three variables (pH, contact time, and initial MB dye concentration) on the adsorption of MB dye onto coconut husk cellulose. The developed RSM-CCD model exhibited a remarkable degree of precision in predicting the removal efficiency of MB dye within the specified experimental parameters. This was demonstrated by the strong regression parameters, with an R<sup>2</sup> value of 99.79% and an adjusted R<sup>2</sup> value of 99.6%. The study depicted that the optimal parameters for attaining a 98.8827% removal of MB dye using coconut husk cellulose were as follows: an initial MB dye concentration of 30 mg∙L<sup>−1</sup>, contact time of 120 minutes, and pH 7 at a fixed adsorbent dose of 0.5 g. The Freundlich isotherm model provided the most satisfactory description of the equilibrium adsorption isotherms, suggesting that MB dye adsorption onto coconut husk cellulose occurs on a heterogeneous surface. The experimental results demonstrated a strong agreement with the pseudo-second-order kinetics model, indicating that the number of active sites present on the cellulose adsorbent predominantly influences the adsorption process of MB dye. Additionally, the adsorbent made from coconut husk cellulose exhibited the potential to be reused, as it retained its efficiency for a maximum of three cycles of adsorption of MB dye. The results of this study show that coconut husk cellulose has the potential to be an effective and sustainable adsorbent for removing MB dye from aqueous solutions. 展开更多
关键词 Adsorption kinetics Isotherms OPTIMIZATION Response Surface Methodology CELLULOSE
下载PDF
Effects of heavy metal ions Cu^(2+)/Pb^(2+)/Zn^(2+)on kinetic rate constants of struvite crystallization
14
作者 Guangyuan Chen Tong Zhou +5 位作者 Meng Zhang Zhongxiang Ding Zhikun Zhou Yuanhui Ji Haiying Tang Changsong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期10-16,共7页
Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents c... Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents causes problems such as slow crystallization rate and small crystal size,limiting the recovery rate and economic value of the MAP.The present study was conducted to investigate the effects of concentrations of three heavy metal ions(Cu^(2+),Zn^(2+),and Pb^(2+))on the crystal morphology,crystal size,average growth rate,and crystallization kinetics of MAP.A relationship was established between the kinetic rate constant Ktcalculated by the chemical gradient model and the concentrations of heavy metal ions.The results showed that low concentrations of heavy metal ions in the solution created pits on the MAP surface,and high level of heavy metal ions generated flocs on the MAP surface,which were composed of metal hydroxides,thus inhibiting crystal growth.The crystal size,average growth rate,MAP crystallization rate,and kinetic rate constant Ktdecreased with the increase in heavy metal ion concentration.Moreover,the Ktdemonstrated a linear relationship with the heavy metal concentration ln(C/C~*),which provided a reference for the optimization of the MAP crystallization process in the presence of heavy metal ions. 展开更多
关键词 STRUVITE CRYSTALLIZATION Heavy metal ions kineticS kinetic modeling kinetic rate constant
下载PDF
Combustion performance of pulverized coal and corresponding kinetics study after adding the additives of Fe_(2)O_(3) and CaO 被引量:2
15
作者 Qiangjian Gao Guopeng Zhang +2 位作者 Haiyan Zheng Xin Jiang Fengman Shen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期314-323,共10页
Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and... Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and CaO,on PC combustion were studied using the thermo-gravimetric method.The results demonstrate that both the Fe_(2)O_(3) and CaO can promote combustion performance index of PC including igni-tion index(C_(i)),burnout index(D_(b)),as well as comprehensive combustibility index(S_(n)).The S_(n) increases from 1.37×10^(−6) to 2.16×10^(−6)%2·min^(−2)·℃^(−3) as the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%.Additionally,the combustion kinetics of PC was clarified using the Coats-Redfern method.The results show that the activation energy(E)of PC combustion decreases after adding the above additives.For instance,the E decreases from 56.54 to 35.75 kJ/mol when the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%,which supports the improved combustion per-formance.Moreover,it is uneconomic to utilize pure Fe_(2)O_(3) and CaO in production.Based on economy analysis,we selected the iron-bearing dust(IBD)which contains much Fe_(2)O_(3) and CaO component to investigate,and got the same effects.Therefore,the IBD is a potential option for catalytic PC combustion in BF process. 展开更多
关键词 pulverized coal combustion performance blast furnace kineticS ADDITIVES
下载PDF
Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts 被引量:2
16
作者 Xuan Gao Zhihui Li +2 位作者 Dongsheng Zhang Xinqiang Zhao Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期310-316,共7页
2,5-Dicyanofuran(DCF)is an important biomass-derived platform compound primarily used to prepare bio-based adiponitrile,which is the key precursor for the synthesis of nylon 66 and 1,6-hexanediisocyanate(HDI).In this ... 2,5-Dicyanofuran(DCF)is an important biomass-derived platform compound primarily used to prepare bio-based adiponitrile,which is the key precursor for the synthesis of nylon 66 and 1,6-hexanediisocyanate(HDI).In this study,one-pot,green and safe synthesis of DCF from 2,5-diformylfuran(DFF)and hydroxylamine ionic liquid salts was proposed.Eco-friendly hydroxylamine ionic liquid salts were used as the nitrogen source.Ionic liquid exhibited three-fold function of cosolvent,catalysis and phase separation.The conversion of DFF and yield of DCF reached 100%under the following optimum reaction conditions:temperature of 120℃ for 70 min,volume ratio of paraxylene:[HSO_(3)-b-Py]HSO4 of 2:1,and molar ratio of DFF:(NH_(2)OH)_(2)[HSO_(3)-b-Py]HSO4 of 1:1.5.The reaction mechanism for the synthesis of DCF was proposed,and the kinetic model was established.The reaction order with respect to DFF and intermediate product 2,5-diformylfuran dioxime(DFFD)was 1.06 and 0.16,and the reaction activation energy was 64.07 kJ·mol^(-1) and 59.37 kJ·mol^(-1) respectively.After the reaction,the ionic liquid was easy to separate,recover and recycle. 展开更多
关键词 2 5-Dicyanofuran Hydroxylamine ionic liquid salts Green synthesis kineticS
下载PDF
Phase separation-hydrogen etching-derived Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies boosting superior sodium-ion storage kinetics 被引量:1
17
作者 Lin Yan Lingshuo Zong +6 位作者 Qi Sun Junpeng Guo Zhenyang Yu Zhijun Qiao Jiuhui Han Zhenyu Cui Jianli Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期163-173,I0005,共12页
Understanding the crystal phase evolution of bimetallic oxide anodes is the main concern to profoundly reveal the conversion reaction kinetics and sodium-ion storage mechanisms.Herein,an integrated selfsupporting anod... Understanding the crystal phase evolution of bimetallic oxide anodes is the main concern to profoundly reveal the conversion reaction kinetics and sodium-ion storage mechanisms.Herein,an integrated selfsupporting anode of the Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies(Ov-BMO-Cu)are in-situ generated by phase separation and hydrogen etching using nanoporous Cu-Mn alloy as selfsacrificial templates.On this basis,we have elucidated the relationship between the phase evolution,oxygen vacancies and sodium-ion storage mechanisms,further demonstrating the evolution of oxygen vacancies and the inhibition effect of manganese oxides as an“anchor”on grain aggregation of copper oxides.The kinetic analyses confirm that the expanded lattice space and increased oxygen vacancies of cycled Ov-BMO-Cu synergistically guarantee effective sodium-ion diffusion and storage mechanisms.Therefore,the Ov-BMO-Cu electrode exhibits higher reversible capacities of 4.04 mA h cm^(-2)at 0.2 mA cm^(-2)after 100 cycles and 2.20 m A h cm^(-2)at 1.0 mA cm^(-2)after 500 cycles.Besides,the presodiated Ov-BMO-Cu anode delivers a considerable reversible capacity of 0.79 m A h cm^(-2)at 1.0 mA cm^(-2)after 60 cycles in full cells with Na_(3)V_(2)(PO_(4))_(3)cathode,confirming its outstanding practicality.Thus,this work is expected to provide enlightenment for designing high-capacity bimetallic oxide anodes. 展开更多
关键词 Sodium-ion storage mechanism Bimetallic oxide anode material Crystal phase evolution Oxygen vacancies kinetic analyses
下载PDF
Kinetic Limits of Graphite Anode for Fast‑Charging Lithium‑Ion Batteries 被引量:1
18
作者 Suting Weng Gaojing Yang +9 位作者 Simeng Zhang Xiaozhi Liu Xiao Zhang Zepeng Liu Mengyan Cao Mehmet Nurullah Ateş Yejing Li Liquan Chen Zhaoxiang Wang Xuefeng Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期518-529,共12页
Fast-charging lithium-ion batteries are highly required,especially in reducing the mileage anxiety of the widespread electric vehicles.One of the biggest bottlenecks lies in the sluggish kinetics of the Li^(+)intercal... Fast-charging lithium-ion batteries are highly required,especially in reducing the mileage anxiety of the widespread electric vehicles.One of the biggest bottlenecks lies in the sluggish kinetics of the Li^(+)intercalation into the graphite anode;slow intercalation will lead to lithium metal plating,severe side reactions,and safety concerns.The premise to solve these problems is to fully understand the reaction pathways and rate-determining steps of graphite during fast Li^(+)intercalation.Herein,we compare the Li^(+)diffusion through the graphite particle,interface,and electrode,uncover the structure of the lithiated graphite at high current densities,and correlate them with the reaction kinetics and electrochemical performances.It is found that the rate-determining steps are highly dependent on the particle size,interphase property,and electrode configuration.Insufficient Li^(+)diffusion leads to high polarization,incomplete intercalation,and the coexistence of several staging structures.Interfacial Li^(+)diffusion and electrode transportation are the main rate-determining steps if the particle size is less than 10μm.The former is highly dependent on the electrolyte chemistry and can be enhanced by constructing a fluorinated interphase.Our findings enrich the understanding of the graphite structural evolution during rapid Li^(+)intercalation,decipher the bottleneck for the sluggish reaction kinetics,and provide strategic guidelines to boost the fast-charging performance of graphite anode. 展开更多
关键词 Fast-charging Graphite anode Cryogenic transmission electron microscopy(cryo-TEM) High-rate kinetics
下载PDF
Three-in-one LaNiO_(3) functionalized separator boosting electrochemical stability and redox kinetics for high-performance Li-S battery 被引量:1
19
作者 Weiyu Wang Mingxiu Hou +6 位作者 Fangqian Han Di Yu Jie Liu Qian Zhang Fengli Yu Lei Wang Maoshuai He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期581-591,I0013,共12页
The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfide... The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfides severely restrict the use of Li-S batteries in practical applications.Herein,a novel bimetallic LaNiO_(3) functional material with high electrical conductivity and catalytic property is prepared to act as a high-efficiency polysulfide shuttling stopper.The three LaNiO_(3) samples with different physical/chemical characteristics are obtained by controlling the calcination temperature.In conjunction with the high electrical conductivity and excellent catalytic properties of the as-prepared materials,the appropriate chemisorption toward polysulfides offers great potential to enhance electrochemical stability for highperformance Li-S batteries.Particularly,the Li-S cell with the separator modified by such functional material gives a specific capacity of 658 mA h g^(-1) after 500 cycles at a high current density of 2 C.Even with high sulfur loading of 6.05 mg cm^(-2),the Li-S battery still exhibits an areal specific capacity of 2.81 m A h cm^(-2)after 150 cycles.This work paves a new avenue for the rational design of materials for separator modification in high-performance Li-S batteries. 展开更多
关键词 Li-S battery Functional separator Catalytic property Electrochemical stability Redox kinetics
下载PDF
In situ observation of the dissolution kinetics of Al_(2)O_(3) particles in CaO–Al_(2)O_(3)–SiO_(2) slags using laser confocal scanning microscopy 被引量:1
20
作者 Changyu Ren Caide Huang +1 位作者 Lifeng Zhang Ying Ren 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期345-353,共9页
The dissolution kinetics of Al_(2)O_(3) in CaO-Al_(2)O_(3) SiOslags was studied using a high-temperature confocal scanning laser microscope at 1773 to 1873 K.The results show that the controlling step during the Al_(2... The dissolution kinetics of Al_(2)O_(3) in CaO-Al_(2)O_(3) SiOslags was studied using a high-temperature confocal scanning laser microscope at 1773 to 1873 K.The results show that the controlling step during the Al_(2)O_(3) dissolution was the diffusionin molten slag.It was found that the dissolution curves of Al_(2)O_(3) particles were hardly agreed with the traditional boundary layer diffusion model with the increase of the CaO/Al_(2)O_(3) ratio of slag.A modified diffusion equation considering slag viscosity was developed to study the dissolution mechanism of Al_(2)O_(3) in slag.Diffusion coefficients of Al_(2)O_(3) in slag were calculated as 2.8×10to 4.1×10m~2/s at the temperature of 1773-1873 K.The dissolution rate of Al_(2)O_(3) increased with higher temperature,CaO/Al_(2)O_(3),and particle size.A new model was shown to be v_(Al_(2)O_(3))=0.16×r_(0)^(1.58)×x^(3.52)×(T-T_(mp))^(1.11)to predict the dissolution rate and the total dissolution time of Al_(2)O_(3) inclusions with various sizes,where vAl_(2)O_(3) is the dissolution rate of Al_(2)O_(3) in volume,μm^(3)/s;x is the value of CaO/Al_(2)O_(3) mass ratio;R_(0) is the initial radius of Al_(2)O_(3),μm;T is the temperature,K;T_(mp) is the melting point of slag,K. 展开更多
关键词 INCLUSION dissolution kinetics confocal scanning laser microscope refining slag
下载PDF
上一页 1 2 146 下一页 到第
使用帮助 返回顶部