期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A knowledge matching approach based on multiclassification radial basis function neural network for knowledge push system 被引量:2
1
作者 Shu-you ZHANG Ye GU +1 位作者 Guo-dong YI Zi-li WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第7期981-994,共14页
We present an exploratory study to improve the performance of a knowledge push system in product design. We focus on the domain of knowledge matching, where traditional matching algorithms need repeated calculations t... We present an exploratory study to improve the performance of a knowledge push system in product design. We focus on the domain of knowledge matching, where traditional matching algorithms need repeated calculations that result in a long response time and where accuracy needs to be improved. The goal of our approach is to meet designers’ knowledge demands with a quick response and quality service in the knowledge push system. To improve the previous work, two methods are investigated to augment the limited training set in practical operations,namely, oscillating the feature weight and revising the case feature in the case feature vectors. In addition, we propose a multi-classification radial basis function neural network that can match the knowledge from the knowledge base once and ensure the accuracy of pushing results. We apply our approach using the training set in the design of guides by computer numerical control machine tools for training and testing, and the results demonstrate the benefit of the augmented training set. Moreover, experimental results reveal that our approach outperforms other matching approaches. 展开更多
关键词 Product design knowledge push system Augmented training set Multi-classification neural network knowledge matching
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部