Krüppel-like factor(KLF) family proteins are transcription factors that regulate numerous cellular functions, such as cell proliferation, differentiation, and cell death. Posttranslational modification of KLF pro...Krüppel-like factor(KLF) family proteins are transcription factors that regulate numerous cellular functions, such as cell proliferation, differentiation, and cell death. Posttranslational modification of KLF proteins is important for their transcriptional activities and biological functions. One KLF family member with important roles in cell proliferation and tumorigenesis is KLF5. The function of KLF5 is tightly controlled by post-translational modifications, including SUMOylation, phosphorylation, and ubiquitination. Recent studies from our lab and others' have demonstrated that the tumor suppressor FBW7 is an essential E3 ubiquitin ligase that targets KLF5 for ubiquitination and degradation. KLF5 contains functional Cdc4 phospho-degrons(CPDs), which are required for its interaction with FBW7. Mutation of CPDs in KLF5 blocks the ubiquitination and degradation of KLF5 by FBW7. The protein kinase Glycogen synthase kinase 3β is involved in the phosphorylation of KLF5 CPDs. In both cancer cell lines and mousemodels, it has been shown that FBW7 regulates the expression of KLF5 target genes through the modulation of KLF5 stability. In this review, we summarize the current progress on delineating FBW7-mediated KLF5 ubiquitination and degradation.展开更多
Vascular remodeling is a pathological basis of various disorders. Therefore, it is necessary to understand the occurrence, prevention, and treatment of vascular remodeling. Krüppel-like factor 5 (KLF5) has been i...Vascular remodeling is a pathological basis of various disorders. Therefore, it is necessary to understand the occurrence, prevention, and treatment of vascular remodeling. Krüppel-like factor 5 (KLF5) has been identified as a significant factor in cardiovascular diseases during the last two decades. This review provides a mechanism network of function and regulation of KLF5 in vascular remodeling based on newly published data and gives a summary of its potential therapeutic applications. KLF5 modulates numerous biological processes, which play essential parts in the development of vascular remodeling, such as cell proliferation, phenotype switch, extracellular matrix deposition, inflammation, and angiogenesis by altering downstream genes and signaling pathways. Considering its essential functions, KLF5 could be developed as a potent therapeutic target in vascular disorders.展开更多
Salidroside is extensively used as a herbal medicine worldwide, and it has been shown to protect against disruption of endothelial homeostasis and act as an anti-aging agent. The present study aimed to investigate the...Salidroside is extensively used as a herbal medicine worldwide, and it has been shown to protect against disruption of endothelial homeostasis and act as an anti-aging agent. The present study aimed to investigate the ameliorative effects of salidroside on homocysteine (Hcy)-induced cell senescence in human umbilical vein endothelial cells (HUVECs) that were mediated via inhibition of Krüppel-like factor 4 (KLF4). An endothelial cell senescence model was induced by Hcy. The cell viability, activities of telomerase and lactate dehydrogenase (LDH), and the level of reactive oxygen species were determined using commercial kits. The expression levels of KLF4, p53 and p21 were determined via western blot analysis, whereas the mRNA expression levels of KLF4 were detected by reverse transcription-quantitative PCR. Small interfering RNA-mediated knockdown of KLF4 was found to reverse Hcy-induced cell senescence. Hcy treatment led to an accelerated cell senescence, as evidenced by decreases in both cell viability and telomerase activity, whereas increases were noted in the leakage of LDH and the level of reactive oxygen species, in addition to an up-regulation of the protein levels of p53 and p21, and up-regulation of KLF4 at both the mRNA and protein level. Treatment with salidroside ameliorated Hcy-induced cell senescence in a dose-dependent manner. Taken together, these results suggested that Hcy may induce cell senescence through upregulation of KLF4, and this may be reversed by treatment with salidroside. Therefore, salidroside was shown to inhibit Hcy-induced cell senescence through KLF4 inhibition.展开更多
The key regulators and regeneration-associated genes involved in axonal regeneration of neurons after injury have not been clarified.In high-throughput sequencing,various factors influence the final sequencing results...The key regulators and regeneration-associated genes involved in axonal regeneration of neurons after injury have not been clarified.In high-throughput sequencing,various factors influence the final sequencing results,including the number and size of cells,the depth of sequencing,and the method of cell separation.There is still a lack of research on the detailed molecular expression profile during the regeneration of dorsal root ganglion neuron axon.In this study,we performed lase r-capture microdissection coupled with RNA sequencing on dorsal root ganglion neurons at 0,3,6,and 12 hours and 1,3,and 7 days after sciatic nerve crush in rats.We identified three stages after dorsal root ganglion injury:early(3-12 hours),pre-regeneration(1 day),and regeneration(3-7 days).Gene expression patterns and related function enrichment res ults showed that one module of genes was highly related to axonal regeneration.We verified the up-regulation of activating transcription factor 3(Atf3),Kruppel like factor 6(Klf6),AT-rich inte raction domain 5A(Arid5α),CAMP responsive element modulator(Crem),and FOS like 1,AP-1 transcription factor Subunit(Fosl1) in dorsal root ganglion neurons after injury.Suppressing these transcription factors(Crem,Arid5o,Fosl1 and Klf6) reduced axonal regrowth in vitro.As the hub transcription factor,Atf3 showed higher expression and activity at the preregeneration and regeneration stages.G protein-coupled estrogen receptor 1(Gper1),inte rleukin 12a(Il12α),estrogen receptor 1(ESR1),and interleukin 6(IL6) may be upstream factors that trigger the activation of Atf3 during the repair of axon injury in the early stage.Our study presents the detailed molecular expression profile during axonal regeneration of dorsal root ganglion neurons after peripheral nerve injury.These findings may provide reference for the clinical screening of molecular targets for the treatment of peripheral nerve injury.展开更多
Non-alcoholic fatty liver disease(NAFLD)is a common chronic disease characterized by excessive fat accumulation in hepatocytes in the absence of alcohol consumption.Modern trends towards excessive calorie intake and s...Non-alcoholic fatty liver disease(NAFLD)is a common chronic disease characterized by excessive fat accumulation in hepatocytes in the absence of alcohol consumption.Modern trends towards excessive calorie intake and sedentary life styles have increased the prevalence of NAFLD accompanied by obesity and type 2 diabetes.However,the molecular mechanisms underlying the initiation and progression of NAFLD are not clear.Zinc finger proteins(ZFPs)are a superfamily of metalloproteins that contain zinc finger motifs.ZFPs play diverse physiological roles in tissue homeostasis and also contribute to many pathological conditions,including metabolic,cardiovascular,and neurodegenerative diseases and various types of cancer.In this review,we highlight our current knowledge of several ZFPs that play critical roles in the progression of NAFLD,describe their mechanistic functional networks,and discuss the potential for ZFPs as therapeutic targets for NAFLD.展开更多
基金Supported by Grants from National Basic Research Program of China,973 program,No.2010CB529704 and No.2012CB910404National Natural Science Foundation of China,No.30800587,No.30971521,and No.31171338+1 种基金the Science and Technology Commission of Shanghai Municipality,No.11DZ2260300a scholar of the Shanghai Rising-Star Program from Science and Technology Commission of Shanghai Municipality,No.09QA1401900 to Wang P
文摘Krüppel-like factor(KLF) family proteins are transcription factors that regulate numerous cellular functions, such as cell proliferation, differentiation, and cell death. Posttranslational modification of KLF proteins is important for their transcriptional activities and biological functions. One KLF family member with important roles in cell proliferation and tumorigenesis is KLF5. The function of KLF5 is tightly controlled by post-translational modifications, including SUMOylation, phosphorylation, and ubiquitination. Recent studies from our lab and others' have demonstrated that the tumor suppressor FBW7 is an essential E3 ubiquitin ligase that targets KLF5 for ubiquitination and degradation. KLF5 contains functional Cdc4 phospho-degrons(CPDs), which are required for its interaction with FBW7. Mutation of CPDs in KLF5 blocks the ubiquitination and degradation of KLF5 by FBW7. The protein kinase Glycogen synthase kinase 3β is involved in the phosphorylation of KLF5 CPDs. In both cancer cell lines and mousemodels, it has been shown that FBW7 regulates the expression of KLF5 target genes through the modulation of KLF5 stability. In this review, we summarize the current progress on delineating FBW7-mediated KLF5 ubiquitination and degradation.
基金The work was supported by the National Natural Science Foundation of China(81970360).
文摘Vascular remodeling is a pathological basis of various disorders. Therefore, it is necessary to understand the occurrence, prevention, and treatment of vascular remodeling. Krüppel-like factor 5 (KLF5) has been identified as a significant factor in cardiovascular diseases during the last two decades. This review provides a mechanism network of function and regulation of KLF5 in vascular remodeling based on newly published data and gives a summary of its potential therapeutic applications. KLF5 modulates numerous biological processes, which play essential parts in the development of vascular remodeling, such as cell proliferation, phenotype switch, extracellular matrix deposition, inflammation, and angiogenesis by altering downstream genes and signaling pathways. Considering its essential functions, KLF5 could be developed as a potent therapeutic target in vascular disorders.
文摘Salidroside is extensively used as a herbal medicine worldwide, and it has been shown to protect against disruption of endothelial homeostasis and act as an anti-aging agent. The present study aimed to investigate the ameliorative effects of salidroside on homocysteine (Hcy)-induced cell senescence in human umbilical vein endothelial cells (HUVECs) that were mediated via inhibition of Krüppel-like factor 4 (KLF4). An endothelial cell senescence model was induced by Hcy. The cell viability, activities of telomerase and lactate dehydrogenase (LDH), and the level of reactive oxygen species were determined using commercial kits. The expression levels of KLF4, p53 and p21 were determined via western blot analysis, whereas the mRNA expression levels of KLF4 were detected by reverse transcription-quantitative PCR. Small interfering RNA-mediated knockdown of KLF4 was found to reverse Hcy-induced cell senescence. Hcy treatment led to an accelerated cell senescence, as evidenced by decreases in both cell viability and telomerase activity, whereas increases were noted in the leakage of LDH and the level of reactive oxygen species, in addition to an up-regulation of the protein levels of p53 and p21, and up-regulation of KLF4 at both the mRNA and protein level. Treatment with salidroside ameliorated Hcy-induced cell senescence in a dose-dependent manner. Taken together, these results suggested that Hcy may induce cell senescence through upregulation of KLF4, and this may be reversed by treatment with salidroside. Therefore, salidroside was shown to inhibit Hcy-induced cell senescence through KLF4 inhibition.
基金supported by the National Natural Science Foundation of China,Nos. 31730031 and 32130060the National Major Project of Research and Development,No. 2017YFA0104700the Natural Science Foundation of Jiangsu Province,No. BK20202013 (all to XSG)。
文摘The key regulators and regeneration-associated genes involved in axonal regeneration of neurons after injury have not been clarified.In high-throughput sequencing,various factors influence the final sequencing results,including the number and size of cells,the depth of sequencing,and the method of cell separation.There is still a lack of research on the detailed molecular expression profile during the regeneration of dorsal root ganglion neuron axon.In this study,we performed lase r-capture microdissection coupled with RNA sequencing on dorsal root ganglion neurons at 0,3,6,and 12 hours and 1,3,and 7 days after sciatic nerve crush in rats.We identified three stages after dorsal root ganglion injury:early(3-12 hours),pre-regeneration(1 day),and regeneration(3-7 days).Gene expression patterns and related function enrichment res ults showed that one module of genes was highly related to axonal regeneration.We verified the up-regulation of activating transcription factor 3(Atf3),Kruppel like factor 6(Klf6),AT-rich inte raction domain 5A(Arid5α),CAMP responsive element modulator(Crem),and FOS like 1,AP-1 transcription factor Subunit(Fosl1) in dorsal root ganglion neurons after injury.Suppressing these transcription factors(Crem,Arid5o,Fosl1 and Klf6) reduced axonal regrowth in vitro.As the hub transcription factor,Atf3 showed higher expression and activity at the preregeneration and regeneration stages.G protein-coupled estrogen receptor 1(Gper1),inte rleukin 12a(Il12α),estrogen receptor 1(ESR1),and interleukin 6(IL6) may be upstream factors that trigger the activation of Atf3 during the repair of axon injury in the early stage.Our study presents the detailed molecular expression profile during axonal regeneration of dorsal root ganglion neurons after peripheral nerve injury.These findings may provide reference for the clinical screening of molecular targets for the treatment of peripheral nerve injury.
基金This work was supported by funds from the National Natural Science Foundation of China(31770840 to X.Ma and 31800989 to L.Xu)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(TP2017042 to X.Ma)。
文摘Non-alcoholic fatty liver disease(NAFLD)is a common chronic disease characterized by excessive fat accumulation in hepatocytes in the absence of alcohol consumption.Modern trends towards excessive calorie intake and sedentary life styles have increased the prevalence of NAFLD accompanied by obesity and type 2 diabetes.However,the molecular mechanisms underlying the initiation and progression of NAFLD are not clear.Zinc finger proteins(ZFPs)are a superfamily of metalloproteins that contain zinc finger motifs.ZFPs play diverse physiological roles in tissue homeostasis and also contribute to many pathological conditions,including metabolic,cardiovascular,and neurodegenerative diseases and various types of cancer.In this review,we highlight our current knowledge of several ZFPs that play critical roles in the progression of NAFLD,describe their mechanistic functional networks,and discuss the potential for ZFPs as therapeutic targets for NAFLD.