Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huangg...Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huanggang-Huangmei High-Speed Railway as an example and taking deflection of the third principal stress of the surrounding rock at a vault after tunnel excavation as the criterion,the critical buried depth of the large section tunnel was determined.Then,the strength reduction method was employed to calculate the tunnel safety factor under different rock classes and thickness-span ratios,and mathematical statistics was conducted to identify the relationships of the tunnel safety factor with the thickness-span ratio and the basic quality(BQ)index of the rock for different rock classes.Finally,the influences of thickness-span ratio,groundwater,initial stress of rock and structural attitude factors were considered to obtain the corrected BQ,based on which the stability of a large cross-section tunnel with a depth of more than 100 m during mechanized operation was analyzed.This evaluation method was then applied to Liuyuan Tunnel and Cimushan No.2 Tunnel of Chongqing Urban Expressway for verification.Findings-This study shows that under different rock classes,the tunnel safety factor is a strict power function of the thickness-span ratio,while a linear function of the BQ to some extent.It is more suitable to use the corrected BQ as a quantitative index to evaluate tunnel stability according to the actual conditions of the site.Originality/value-The existing industry standards do not consider the influence of buried depth and span in the evaluation of tunnel stability.The stability evaluation method of large section tunnel considering the correction of overburden span ratio proposed in this paper achieves higher accuracy for the stability evaluation of surrounding rock in a full or large-section mechanized excavation of double line high-speed railway tunnels.展开更多
In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP...In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP bolts used in shallow underground mining cannot fulfil the rib support requirements. Under the engineering background of deep underground shortwall mining in Wudong coal mine, this paper systematically studies Φ27 mm FRP bolt support for large deformation coal rib. Specimens with a fan-shaped cross-section were used to enable the tensile testing of the bolt rod, the measured average tensile strength of the studied FRP bolt was(486.1 ± 9.6) MPa with a maximum elongation of 5.7%±0.6%.The shear strength of the bolt was measured as approximately 258 MPa using a self-made double shear testing apparatus. Based on the equivalent radial stiffness principle, a laboratory short encapsulation pullout test(SEPT) method for rib bolting has been developed undertaken consideration of the mechanical properties of the coal seam. Results showed that the average peak anchorage forces of the Φ27 mm FRP bolt and Φ20 mm steel rebar bolt were 108.4 and 66.4 k N, respectively, which were agreed with the theoretical calculations and field measurements. Based on theoretical analysis of the loading states of the bolt under site conditions, bolting method of full-length resin grouting was adopted to offset the weaknesses of the FRP bolt. Numerical method was employed to compare the bolting effect using Φ27 mm FRP bolts and steel rebar bolts. Large diameter FRP bolting was determined as the optimum rib support scheme to increase the productivity of the coal mine and to enhance the ground control capability for+425 level mining roadways. This study provides the laboratory testing design and theoretical prediction of large diameter FRP bolts used for rib support in large deformation roadways.展开更多
In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupli...In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupling action of multiple factors such as deep high stress,adjacent faults,cross-layer design,weak lithology,broken surrounding rock,variable cross-sections,wide sections up to 9.9 m,and clusters of nearby chambers,there was severe deformation and breakdown in the No.10 intersection of the roadway of large-scale variable cross-section at the−760 m level in a coal mine.As there are insufcient examples in engineering methods pertaining to the geological environment described above,the numerical calculation model was oversimplifed and support theory underdeveloped;therefore,it is imperative to develop an efective support system for the stability and sustenance of deep roadways.In this study,a quantitative analysis of the geological environment of the roadway through feld observations,borehole-scoping,and ground stress testing is carried out to establish the FLAC 3D variable cross-section crossing roadway model.This model is combined with the strain softening constitutive(surrounding rock)and Mohr–Coulomb constitutive(other deep rock formations)models to construct a compression arch mechanical model for deep soft rock,based on the quadratic parabolic Mohr criterion.An integrated control technology of bolting and grouting that is mainly composed of a high-strength hollow grouting cable bolt equipped with modifed cement grouting materials and a high-elongation cable bolt is developed by analyzing the strengthening properties of the surrounding rock before and after bolting,based on the Heok-Brown criterion.As a result of on-site practice,the following conclusions are drawn:(1)The plastic zone of the roof of the cross roadway is approximately 6 m deep in this environment,the tectonic stress is nearly 30 MPa,and the surrounding rock is severely fractured.(2)The deformation of the roadway progressively increases from small to large cross-sections,almost doubling at the largest cross-section.The plastic zone is concentrated at the top plate and shoulder and decreases progressively from the two sides to the bottom corner.The range of stress concentration at the sides of the intersection roadway close to the passageway is wider and higher.(3)The 7 m-thick reinforced compression arch constructed under the strengthening support scheme has a bearing capacity enhanced by 1.8 to 2.3 times and increase in thickness of the bearing structure by 1.76 times as compared to the original scheme.(4)The increase in the mechanical parameters c andφof the surrounding rock after anchoring causes a signifcant increase inσt;the pulling force of the cable bolt beneath the new grouting material is more than twice that of ordinary cement grout,and according to the test,the supporting stress feld shows that the 7.24 m surrounding rock is compacted and strengthened in addition to providing a strong foundation for the bolt(cable).On-site monitoring shows that the 60-days convergence is less than 30 mm,indicating that the stability control of the roadway is successful.展开更多
Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadwa...Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadways. The experimental results show that the influence of blast load on adjacent roadway has a good relationship with the cross-section of roadway. The expansion distance of precrack existed in circular, arch-wall, rectangular roadway is respectively 1.76, 1.61 and 0 cm under blast load.At the same time, the direct-blast side of rectangular roadway has more obvious damage compared with circular and arch-wall roadway. It explains that plane reflects more stress wave than arc, so that it exerts more tensile failure in the direct-blast side, which leads to less stress wave diffracting to the precrack in the back-blast side. When the precrack extends, higher value dynamic stress intensity factor in circular roadway works longer than that of arch-wall roadway. Indirectly, it explains that plane's weakening function on stress wave is significantly stronger than arc. Stress wave brings about self-evident influence on the upper and bottom endpoints of the rectangular roadway, and it respectively extends 1.03, 2.06 cm along the line link direction of the center of the blasthole and the upper and bottom endpoints on the right wall.展开更多
With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce suppor...With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce support effect not obvious for ordinary bolt(cable). While bounding point and support structure of the truss cable is in vertex angle of roadway, and supplies coal-rock layers in bounding area with the horizontal and vertical pressure, so it settles the support problems in large cross section coal roadway. From the point of view of mechanics, gave emphasis on the invalid mechanics of ordinary bolt (cable) in large cross section coal roadway and supported mechanics of prestress truss cable. The author successfully used this technique in Wuyang Mine, and had the huge economic efficiency and the social benefit.展开更多
The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challe...The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.展开更多
Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mi...Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.展开更多
Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pr...Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.展开更多
Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration(VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation(LE...Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration(VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation(LES) is conducted for studying the fluid-structure interaction. The vortex shedding in the wake, the motion trajectories of a cylinder, the variation of drag and lift forces on the cylinder are analyzed. The results show that the vortices of variable cross-section cylinder are chaotic and are varying along the cylinder. In places where cross-sections are changing significantly, the vortices are more irregular. The motion trail of the cylinder is almost the same but irregular. The drag and lift coefficients of the cylinder are varying with the changes of diameters.展开更多
基金supported by the NSFC HSR Fundamental Research Joint Fund (Grant No.U1934213)。
文摘Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huanggang-Huangmei High-Speed Railway as an example and taking deflection of the third principal stress of the surrounding rock at a vault after tunnel excavation as the criterion,the critical buried depth of the large section tunnel was determined.Then,the strength reduction method was employed to calculate the tunnel safety factor under different rock classes and thickness-span ratios,and mathematical statistics was conducted to identify the relationships of the tunnel safety factor with the thickness-span ratio and the basic quality(BQ)index of the rock for different rock classes.Finally,the influences of thickness-span ratio,groundwater,initial stress of rock and structural attitude factors were considered to obtain the corrected BQ,based on which the stability of a large cross-section tunnel with a depth of more than 100 m during mechanized operation was analyzed.This evaluation method was then applied to Liuyuan Tunnel and Cimushan No.2 Tunnel of Chongqing Urban Expressway for verification.Findings-This study shows that under different rock classes,the tunnel safety factor is a strict power function of the thickness-span ratio,while a linear function of the BQ to some extent.It is more suitable to use the corrected BQ as a quantitative index to evaluate tunnel stability according to the actual conditions of the site.Originality/value-The existing industry standards do not consider the influence of buried depth and span in the evaluation of tunnel stability.The stability evaluation method of large section tunnel considering the correction of overburden span ratio proposed in this paper achieves higher accuracy for the stability evaluation of surrounding rock in a full or large-section mechanized excavation of double line high-speed railway tunnels.
基金The work presented in this paper was financially jointly supported by General Project of the National Natural Science Foundation of China(No.52074145)Liaoning Revitalization Talents Program(No.XLYC2002110).
文摘In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP bolts used in shallow underground mining cannot fulfil the rib support requirements. Under the engineering background of deep underground shortwall mining in Wudong coal mine, this paper systematically studies Φ27 mm FRP bolt support for large deformation coal rib. Specimens with a fan-shaped cross-section were used to enable the tensile testing of the bolt rod, the measured average tensile strength of the studied FRP bolt was(486.1 ± 9.6) MPa with a maximum elongation of 5.7%±0.6%.The shear strength of the bolt was measured as approximately 258 MPa using a self-made double shear testing apparatus. Based on the equivalent radial stiffness principle, a laboratory short encapsulation pullout test(SEPT) method for rib bolting has been developed undertaken consideration of the mechanical properties of the coal seam. Results showed that the average peak anchorage forces of the Φ27 mm FRP bolt and Φ20 mm steel rebar bolt were 108.4 and 66.4 k N, respectively, which were agreed with the theoretical calculations and field measurements. Based on theoretical analysis of the loading states of the bolt under site conditions, bolting method of full-length resin grouting was adopted to offset the weaknesses of the FRP bolt. Numerical method was employed to compare the bolting effect using Φ27 mm FRP bolts and steel rebar bolts. Large diameter FRP bolting was determined as the optimum rib support scheme to increase the productivity of the coal mine and to enhance the ground control capability for+425 level mining roadways. This study provides the laboratory testing design and theoretical prediction of large diameter FRP bolts used for rib support in large deformation roadways.
基金supported by the National Natural Science Foundation of China(Grant Nos.52074296,52004286)the China Postdoctoral Science Foundation(Grant Nos.2020T130701,2019M650895).
文摘In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupling action of multiple factors such as deep high stress,adjacent faults,cross-layer design,weak lithology,broken surrounding rock,variable cross-sections,wide sections up to 9.9 m,and clusters of nearby chambers,there was severe deformation and breakdown in the No.10 intersection of the roadway of large-scale variable cross-section at the−760 m level in a coal mine.As there are insufcient examples in engineering methods pertaining to the geological environment described above,the numerical calculation model was oversimplifed and support theory underdeveloped;therefore,it is imperative to develop an efective support system for the stability and sustenance of deep roadways.In this study,a quantitative analysis of the geological environment of the roadway through feld observations,borehole-scoping,and ground stress testing is carried out to establish the FLAC 3D variable cross-section crossing roadway model.This model is combined with the strain softening constitutive(surrounding rock)and Mohr–Coulomb constitutive(other deep rock formations)models to construct a compression arch mechanical model for deep soft rock,based on the quadratic parabolic Mohr criterion.An integrated control technology of bolting and grouting that is mainly composed of a high-strength hollow grouting cable bolt equipped with modifed cement grouting materials and a high-elongation cable bolt is developed by analyzing the strengthening properties of the surrounding rock before and after bolting,based on the Heok-Brown criterion.As a result of on-site practice,the following conclusions are drawn:(1)The plastic zone of the roof of the cross roadway is approximately 6 m deep in this environment,the tectonic stress is nearly 30 MPa,and the surrounding rock is severely fractured.(2)The deformation of the roadway progressively increases from small to large cross-sections,almost doubling at the largest cross-section.The plastic zone is concentrated at the top plate and shoulder and decreases progressively from the two sides to the bottom corner.The range of stress concentration at the sides of the intersection roadway close to the passageway is wider and higher.(3)The 7 m-thick reinforced compression arch constructed under the strengthening support scheme has a bearing capacity enhanced by 1.8 to 2.3 times and increase in thickness of the bearing structure by 1.76 times as compared to the original scheme.(4)The increase in the mechanical parameters c andφof the surrounding rock after anchoring causes a signifcant increase inσt;the pulling force of the cable bolt beneath the new grouting material is more than twice that of ordinary cement grout,and according to the test,the supporting stress feld shows that the 7.24 m surrounding rock is compacted and strengthened in addition to providing a strong foundation for the bolt(cable).On-site monitoring shows that the 60-days convergence is less than 30 mm,indicating that the stability control of the roadway is successful.
基金provided by the National Natural Science Foundation of China (Nos. 51274204 and 51134025)National Key Basic Research Program (No. 2010CB732002)The Ministry of Education Program for New Century Excellent Talents to Support Project of China (No. NCET-12-0965)
文摘Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadways. The experimental results show that the influence of blast load on adjacent roadway has a good relationship with the cross-section of roadway. The expansion distance of precrack existed in circular, arch-wall, rectangular roadway is respectively 1.76, 1.61 and 0 cm under blast load.At the same time, the direct-blast side of rectangular roadway has more obvious damage compared with circular and arch-wall roadway. It explains that plane reflects more stress wave than arc, so that it exerts more tensile failure in the direct-blast side, which leads to less stress wave diffracting to the precrack in the back-blast side. When the precrack extends, higher value dynamic stress intensity factor in circular roadway works longer than that of arch-wall roadway. Indirectly, it explains that plane's weakening function on stress wave is significantly stronger than arc. Stress wave brings about self-evident influence on the upper and bottom endpoints of the rectangular roadway, and it respectively extends 1.03, 2.06 cm along the line link direction of the center of the blasthole and the upper and bottom endpoints on the right wall.
基金Supported by the National Natural Science Foundation of China (50074030) and Dr. Special fund of the Ministry of Education (20030290017)
文摘With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce support effect not obvious for ordinary bolt(cable). While bounding point and support structure of the truss cable is in vertex angle of roadway, and supplies coal-rock layers in bounding area with the horizontal and vertical pressure, so it settles the support problems in large cross section coal roadway. From the point of view of mechanics, gave emphasis on the invalid mechanics of ordinary bolt (cable) in large cross section coal roadway and supported mechanics of prestress truss cable. The author successfully used this technique in Wuyang Mine, and had the huge economic efficiency and the social benefit.
基金supported by the National Natural Science Foundation of China(Grant No.51874311,52174096)。
文摘The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.
文摘Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.
基金Financial supports are from the National Natural Science Foundation of China (No. 50874104)the Scientific Research Industrialization Project of Jiangsu Universities (No. JH07-023)
文摘Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.
基金supported by the National Natural Science Foundation of China (Nos. 51179179 and 51079136)
文摘Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration(VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation(LES) is conducted for studying the fluid-structure interaction. The vortex shedding in the wake, the motion trajectories of a cylinder, the variation of drag and lift forces on the cylinder are analyzed. The results show that the vortices of variable cross-section cylinder are chaotic and are varying along the cylinder. In places where cross-sections are changing significantly, the vortices are more irregular. The motion trail of the cylinder is almost the same but irregular. The drag and lift coefficients of the cylinder are varying with the changes of diameters.