With the development of coal mine equipment mechanization, the wide application of </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">...With the development of coal mine equipment mechanization, the wide application of </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">hole instead of roadway</span><span style="font-family:Verdana;">”</span><span style="font-family:Verdana;"> technology greatly reduces the cost of gas control engineering, but puts forward higher requirements for the effect of gas drainage. At present, the drainage effect of coal mine inspection boreholes is mainly evaluated by the drilling field, but the flow rate and gas concentration of each borehole in the drilling field are not the same, which causes the gas drainage effect not to be correctly mastered. In the present study, the pressure relief drilling in the goaf of the working face of a typical multi-coal seam group high gas outburst mining area was taken as the research object. Through the newly developed portable drilling inspection device, the pure amount of drilling drainage was investigated, and the drilling design was dynamically adjusted. The enhancement of the goaf pressure relief gas control effect ensures the gas safety of the mining face. At the same time, this improves the gas extraction rate and reduces the emission of greenhouse gases. If the data from the borehole investigation can be transmitted in real time and analyzed in big data, the optimal extraction negative pressure can be predicted through a regression algorithm. Under the control of the negative pressure of each borehole by the actuator, the extraction system can have the function of intelligent judgment.展开更多
文摘With the development of coal mine equipment mechanization, the wide application of </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">hole instead of roadway</span><span style="font-family:Verdana;">”</span><span style="font-family:Verdana;"> technology greatly reduces the cost of gas control engineering, but puts forward higher requirements for the effect of gas drainage. At present, the drainage effect of coal mine inspection boreholes is mainly evaluated by the drilling field, but the flow rate and gas concentration of each borehole in the drilling field are not the same, which causes the gas drainage effect not to be correctly mastered. In the present study, the pressure relief drilling in the goaf of the working face of a typical multi-coal seam group high gas outburst mining area was taken as the research object. Through the newly developed portable drilling inspection device, the pure amount of drilling drainage was investigated, and the drilling design was dynamically adjusted. The enhancement of the goaf pressure relief gas control effect ensures the gas safety of the mining face. At the same time, this improves the gas extraction rate and reduces the emission of greenhouse gases. If the data from the borehole investigation can be transmitted in real time and analyzed in big data, the optimal extraction negative pressure can be predicted through a regression algorithm. Under the control of the negative pressure of each borehole by the actuator, the extraction system can have the function of intelligent judgment.