Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of...The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.展开更多
The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s...The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s economic benefits,minimize unnecessary costs,and provide decision-makers with a robust financial foundation.Additionally,implementing an effective cash flow control mechanism and conducting a comprehensive assessment of potential project risks can ensure financial stability and mitigate the risk of fund shortages.Developing a practical and feasible fundraising plan,along with stringent fund management practices,can prevent fund wastage and optimize fund utilization efficiency.These measures not only facilitate smooth project progression and improve project management efficiency but also enhance the project’s economic and social outcomes.展开更多
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi...The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.展开更多
This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly m...This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly mounted on a shared platform with both horizontally and vertically interlaced modules.Each module consists of a moderate/flexible number of array elements with the inter-element distance typically in the order of the signal wavelength,while different modules are separated by the relatively large inter-module distance for convenience of practical deployment.By accurately modelling the signal amplitudes and phases,as well as projected apertures across all modular elements,we analyse the near-field signal-to-noise ratio(SNR)performance for modular XL-array communications.Based on the non-uniform spherical wave(NUSW)modelling,the closed-form SNR expression is derived in terms of key system parameters,such as the overall modular array size,distances of adjacent modules along all dimensions,and the user's three-dimensional(3D)location.In addition,with the number of modules in different dimensions increasing infinitely,the asymptotic SNR scaling laws are revealed.Furthermore,we show that our proposed near-field modelling and performance analysis include the results for existing array architectures/modelling as special cases,e.g.,the collocated XL-array architecture,the uniform plane wave(UPW)based far-field modelling,and the modular extremely large-scale uniform linear array(XL-ULA)of onedimension.Extensive simulation results are presented to validate our findings.展开更多
A new solution of combination network of GPS and high precise distance measurements with EDM is proposed. Meanwhile, it’s inadvisable only using GPS network without distance measurements. Three schemes: terrestrial n...A new solution of combination network of GPS and high precise distance measurements with EDM is proposed. Meanwhile, it’s inadvisable only using GPS network without distance measurements. Three schemes: terrestrial network, GPS network and combination network are discussed for horizontal control network design of Xiangjiaba Dam in view of precision, reliability, coordinate and outlay in detail.展开更多
The anaerobic digestion(AD)disposal of stover and cattle manure is of great significance to the development of low-carbon economy and green energy in China,but it will also have an impact on the environment,and the de...The anaerobic digestion(AD)disposal of stover and cattle manure is of great significance to the development of low-carbon economy and green energy in China,but it will also have an impact on the environment,and the degree of influence is different for various raw materials.In this study,life cycle assessment(LCA)methods were applied to analyze and compare the impact of corn stovers biogas projects(CSBP)and dairy manure biogas projects(DMBP)on the environment during the whole operation stage.The results of inventory analysis were evaluated by ReCiPe2016 Hierarchy(H)mid-point(problem-oriented)and end-point(destruction-oriented)method,respectively.The results showed that the net energy efficiency of CSBP was higher(763.903 kW·h/FU)and the greenhouse gas(GHG)emission reduction of DMBP was more(5541.418 kg CO_(2)-eq/FU).The anaerobic digestion(AD)units have the greatest environmental impacts,and human carcinogenic toxicity is the largest environmental impact category(1.16-1.43 PE).The key to reducing environmental impact is reducing the input of chemical substances and the waste of electric energy.Both CSBP and DMBP have a favorable impact on ecosystem quality and resources,and CSBP is more beneficial to the environment(-10.297 Pt).Co-digestion is an important measure to reduce the environmental damage from biogas projects.These research results provide theoretical support for the selection of raw materials for large-scale biogas projects in China,provide technical basis for reducing the impact of actual operation on the environment,and promote the resource utilization of agricultural waste and carbon dioxide emission reduction and sequestration.展开更多
In order to construct the data mining frame for the generic project risk research, the basic definitions of the generic project risk element were given, and then a new model of the generic project risk element was pre...In order to construct the data mining frame for the generic project risk research, the basic definitions of the generic project risk element were given, and then a new model of the generic project risk element was presented with the definitions. From the model, data mining method was used to acquire the risk transmission matrix from the historical databases analysis. The quantitative calculation problem among the generic project risk elements was solved. This method deals with well the risk element transmission problems with limited states. And in order to get the limited states, fuzzy theory was used to discrete the historical data in historical databases. In an example, the controlling risk degree is chosen as P(Rs≥2) ≤0.1, it means that the probability of risk state which is not less than 2 in project is not more than 0.1, the risk element R3 is chosen to control the project, respectively. The result shows that three risk element transmission matrix can be acquired in 4 risk elements, and the frequency histogram and cumulative frequency histogram of each risk element are also given.展开更多
Computerized geological models are the basis of modern mine design,planning and production.A sound,validated geological model is essential to the success of a min- ing project.However,due to the complexity of geology ...Computerized geological models are the basis of modern mine design,planning and production.A sound,validated geological model is essential to the success of a min- ing project.However,due to the complexity of geology surrounding deposits,geological models inherit uncertainty,or error.This geological uncertainty may significantly affect the risk profile of a mining project during its design and operational phases.Methodologies for quantifying geological uncertainty and risk have been developed by CRC Mining and the University of Queensland,Australia and successfully applied to case studies.This paper discussed the implications of geological uncertainty and risk to a coal mining project,and presents advances for quantifying geological/geotechnical uncertainty and risk.A case study is presented to demonstrate the application of the technology developed.展开更多
To overcome the subjectivity of experts in the process of risk response scheme selection, according to the theory of group decision making, a selection method and flow of the risk response schemes for a mining project...To overcome the subjectivity of experts in the process of risk response scheme selection, according to the theory of group decision making, a selection method and flow of the risk response schemes for a mining project was proposed based on fuzzy preference relation and consistency induced ordered weighted averaging (C-IOWA) operator,which can overcome the loss of information in the process of group decision making to a great degree, and improve its efficiency and quality.A numeric example was introduced to illustrate the application of the method, also validating the method as scientific and practicable.展开更多
In the United Republic of Tanzania (URT), all environmental issues related to the mining industry are regulated according to two principle Acts: The Mining Act and the Environmental Management Act, and their respectiv...In the United Republic of Tanzania (URT), all environmental issues related to the mining industry are regulated according to two principle Acts: The Mining Act and the Environmental Management Act, and their respective regulations. The current acts were enacted in 2010 and 2004 respectively. Mineral exploration (that includes all on-site activities performed before a mining project is declared feasible) projects in URT appears to be “unforgotten phenomena” in the two major legislative documents, when it comes to environmental considerations. This phenomenon is believed to be causing detrimental effects to the environment. This paper, therefore, analyzes the current environmental regulatory framework on mineral exploration projects in URT and discusses few examples in which mineral exploration projects have caused damage to the indigenous environment. Furthermore, this study reviews environmental regulatory frameworks from other few countries in comparison with existing environmental regulatory framework prevailing in URT.展开更多
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
基金Financial support for this work was provided by the Youth Fund Program of the National Natural Science Foundation of China (No. 42002292)the General Program of the National Natural Science Foundation of China (No. 42377175)the General Program of the Hubei Provincial Natural Science Foundation, China (No. 2023AFB631)
文摘The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.
文摘The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s economic benefits,minimize unnecessary costs,and provide decision-makers with a robust financial foundation.Additionally,implementing an effective cash flow control mechanism and conducting a comprehensive assessment of potential project risks can ensure financial stability and mitigate the risk of fund shortages.Developing a practical and feasible fundraising plan,along with stringent fund management practices,can prevent fund wastage and optimize fund utilization efficiency.These measures not only facilitate smooth project progression and improve project management efficiency but also enhance the project’s economic and social outcomes.
基金supported by the National Natural Science Foundation of China(Grant Nos.52278407 and 52378407)the China Postdoctoral Science Foundation(Grant No.2023M732670)the support by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation.
文摘The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.
基金supported by the National Key R&D Program of China with Grant number 2019YFB1803400the National Natural Science Foundation of China under Grant number 62071114the Fundamental Research Funds for the Central Universities of China under grant numbers 3204002004A2 and 2242022k30005。
文摘This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly mounted on a shared platform with both horizontally and vertically interlaced modules.Each module consists of a moderate/flexible number of array elements with the inter-element distance typically in the order of the signal wavelength,while different modules are separated by the relatively large inter-module distance for convenience of practical deployment.By accurately modelling the signal amplitudes and phases,as well as projected apertures across all modular elements,we analyse the near-field signal-to-noise ratio(SNR)performance for modular XL-array communications.Based on the non-uniform spherical wave(NUSW)modelling,the closed-form SNR expression is derived in terms of key system parameters,such as the overall modular array size,distances of adjacent modules along all dimensions,and the user's three-dimensional(3D)location.In addition,with the number of modules in different dimensions increasing infinitely,the asymptotic SNR scaling laws are revealed.Furthermore,we show that our proposed near-field modelling and performance analysis include the results for existing array architectures/modelling as special cases,e.g.,the collocated XL-array architecture,the uniform plane wave(UPW)based far-field modelling,and the modular extremely large-scale uniform linear array(XL-ULA)of onedimension.Extensive simulation results are presented to validate our findings.
基金Supported bythe National 973 Programof China(No.2003CB716705) International Cooperative Fund of European Union(No.EVGI-CT-2002-00061) .
文摘A new solution of combination network of GPS and high precise distance measurements with EDM is proposed. Meanwhile, it’s inadvisable only using GPS network without distance measurements. Three schemes: terrestrial network, GPS network and combination network are discussed for horizontal control network design of Xiangjiaba Dam in view of precision, reliability, coordinate and outlay in detail.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFE0106000)the National Natural Science Foundation of China(Grant No.52206234).
文摘The anaerobic digestion(AD)disposal of stover and cattle manure is of great significance to the development of low-carbon economy and green energy in China,but it will also have an impact on the environment,and the degree of influence is different for various raw materials.In this study,life cycle assessment(LCA)methods were applied to analyze and compare the impact of corn stovers biogas projects(CSBP)and dairy manure biogas projects(DMBP)on the environment during the whole operation stage.The results of inventory analysis were evaluated by ReCiPe2016 Hierarchy(H)mid-point(problem-oriented)and end-point(destruction-oriented)method,respectively.The results showed that the net energy efficiency of CSBP was higher(763.903 kW·h/FU)and the greenhouse gas(GHG)emission reduction of DMBP was more(5541.418 kg CO_(2)-eq/FU).The anaerobic digestion(AD)units have the greatest environmental impacts,and human carcinogenic toxicity is the largest environmental impact category(1.16-1.43 PE).The key to reducing environmental impact is reducing the input of chemical substances and the waste of electric energy.Both CSBP and DMBP have a favorable impact on ecosystem quality and resources,and CSBP is more beneficial to the environment(-10.297 Pt).Co-digestion is an important measure to reduce the environmental damage from biogas projects.These research results provide theoretical support for the selection of raw materials for large-scale biogas projects in China,provide technical basis for reducing the impact of actual operation on the environment,and promote the resource utilization of agricultural waste and carbon dioxide emission reduction and sequestration.
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘In order to construct the data mining frame for the generic project risk research, the basic definitions of the generic project risk element were given, and then a new model of the generic project risk element was presented with the definitions. From the model, data mining method was used to acquire the risk transmission matrix from the historical databases analysis. The quantitative calculation problem among the generic project risk elements was solved. This method deals with well the risk element transmission problems with limited states. And in order to get the limited states, fuzzy theory was used to discrete the historical data in historical databases. In an example, the controlling risk degree is chosen as P(Rs≥2) ≤0.1, it means that the probability of risk state which is not less than 2 in project is not more than 0.1, the risk element R3 is chosen to control the project, respectively. The result shows that three risk element transmission matrix can be acquired in 4 risk elements, and the frequency histogram and cumulative frequency histogram of each risk element are also given.
文摘Computerized geological models are the basis of modern mine design,planning and production.A sound,validated geological model is essential to the success of a min- ing project.However,due to the complexity of geology surrounding deposits,geological models inherit uncertainty,or error.This geological uncertainty may significantly affect the risk profile of a mining project during its design and operational phases.Methodologies for quantifying geological uncertainty and risk have been developed by CRC Mining and the University of Queensland,Australia and successfully applied to case studies.This paper discussed the implications of geological uncertainty and risk to a coal mining project,and presents advances for quantifying geological/geotechnical uncertainty and risk.A case study is presented to demonstrate the application of the technology developed.
文摘To overcome the subjectivity of experts in the process of risk response scheme selection, according to the theory of group decision making, a selection method and flow of the risk response schemes for a mining project was proposed based on fuzzy preference relation and consistency induced ordered weighted averaging (C-IOWA) operator,which can overcome the loss of information in the process of group decision making to a great degree, and improve its efficiency and quality.A numeric example was introduced to illustrate the application of the method, also validating the method as scientific and practicable.
文摘In the United Republic of Tanzania (URT), all environmental issues related to the mining industry are regulated according to two principle Acts: The Mining Act and the Environmental Management Act, and their respective regulations. The current acts were enacted in 2010 and 2004 respectively. Mineral exploration (that includes all on-site activities performed before a mining project is declared feasible) projects in URT appears to be “unforgotten phenomena” in the two major legislative documents, when it comes to environmental considerations. This phenomenon is believed to be causing detrimental effects to the environment. This paper, therefore, analyzes the current environmental regulatory framework on mineral exploration projects in URT and discusses few examples in which mineral exploration projects have caused damage to the indigenous environment. Furthermore, this study reviews environmental regulatory frameworks from other few countries in comparison with existing environmental regulatory framework prevailing in URT.