期刊文献+
共找到4,170篇文章
< 1 2 209 >
每页显示 20 50 100
Defect Inspection Technology for Steel Truss Suspension Bridges
1
作者 Bo Liu Xu Meng +1 位作者 Ji Li Zhi Tu 《Journal of World Architecture》 2024年第2期12-16,共5页
Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension b... Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension bridge,it is necessary to inspect for defects promptly,understand the cause of the defect,and locate it through the use of inspection technology.By promptly addressing defects,the suspension bridge’s safety can be ensured.The author has analyzed the common defects and causes of steel truss suspension bridges and proposed specific inspection technologies.This research is intended to aid in the timely discovery of steel truss suspension bridge defects. 展开更多
关键词 Steel truss suspension bridge DEFECT Inspection technology
下载PDF
A method for calculating strand tension in the anchor span of a suspension bridge considering the rotation of a splay saddle
2
作者 Xuejin Huo Jia Chen +1 位作者 Dongxu Wang Li Zhu 《High-Speed Railway》 2023年第1期56-62,共7页
This paper reports a method for strand tension in anchor spans considering rotation.A kind of co-moved coordinate system,a saddle local coordinate system,was set up.This system implemented the rotation of the splay sa... This paper reports a method for strand tension in anchor spans considering rotation.A kind of co-moved coordinate system,a saddle local coordinate system,was set up.This system implemented the rotation of the splay saddle through the rotation of the coordinate system,and all calculations proceeded in this coordinate system.Considering the rotation of the anchoring surface by the rotation of the local coordinate system of the anchoring surface,the anchorage point coordinates of strands were transformed to the local sadle coordinate system.There was a two-layer iteration adopted in the calculation.In the inner iteration,the cable force at the end of the vertical bend was taken as the variable,and the ordinate of the anchorage point was taken as the target value.In the outer iteration,the vertical tangential angle at the end of the vertical bend was taken as the variable,and the ordinate of the anchorage point was taken as the target value.The method carried out the rotation of the splay saddle and anchor surface and was simple,convenient and without approximation.The effect of rotation was considered precisely;it showed stability during the process of two-layer iteration,powerful adaptation and higher efficiency and had been successfully applied in the construction control of the Wufengshan Yangtze River Bridge,the world's first kilometer-level combined highway and railway suspension bridge. 展开更多
关键词 suspension bridge Anchor span Strand tension ROTATION
下载PDF
Mechanical deformation properties of Continuous Welded Rail on kilometer-span suspension bridge for high-speed railway
3
作者 Xiaopei Cai Wanli Liu +2 位作者 Liang Gao Yonghua Su Jingfan Yang 《High-Speed Railway》 2023年第2期97-109,共13页
The complex bridge-track interaction between kilometer-span bridges and continuous Welded Rail(CWR)brings great challenges to CWR designing.Taking a suspension bridge with laying CWR as a case,the mechanical propertie... The complex bridge-track interaction between kilometer-span bridges and continuous Welded Rail(CWR)brings great challenges to CWR designing.Taking a suspension bridge with laying CWR as a case,the mechanical properties of CWR on the bridge are analyzed to reveal the sensitive areas of the track,and the design method of CWR and track structures on the beam ends are proposed.The results show that the unidirectional Rail Expansion Joints(REJ)need to be installed on the beam end of the kilometer-span bridge to reduce rail longitudinal force.Due to the bridge characteristics,there is no CWR fixed area on the kilometer-span bridge,and rail longitudinal force on the main span caused by bending loads needs to be concerned.The deformation of track on the beam end is complex,which is the weak area on the kilometer bridge,the large relative displacement between the stock rail of REJ and the main beam can cause poor stability of ballast bed on beam end,small resistance fasteners need to be laid on the sides of stock rail on the main beam to increase the stability of ballast and fasteners on the beam end.To improve the driving safety and comfort of beam end,the Sleeper-Supporting Apparatus(SSA)should be specially designed to ensure the uniform transition of track on beam ends.Temperature and wind loads have a significant impact on track regularity on the kilometer span bridge,the dynamic response of trains and bridges under those loads needs to be attended to. 展开更多
关键词 Kilometer-span suspension bridge Continuous welded rail Rail expansion joint Statics mechanical properties Sleeper-supporting apparatus Dynamic response
下载PDF
Long-Time Behavior of Solution for Autonomous Suspension Bridge Equations with State-Dependent Delay
4
作者 Suping Wang Qiaozhen Ma Xukui Shao 《Engineering(科研)》 2023年第10期632-646,共15页
This work is devoted to the following suspension bridge with state-dependent delay: . The main goal of this paper is to investigate the long-time behavior of the system. Under suitable hypothesis, the quasi-stability ... This work is devoted to the following suspension bridge with state-dependent delay: . The main goal of this paper is to investigate the long-time behavior of the system. Under suitable hypothesis, the quasi-stability estimates of the system are established, based on which the existence of global attractor with finite fractal dimension is obtained. Furthermore, the existence of exponential attractor is proved. 展开更多
关键词 suspension bridge Equation State-Dependent Delay Global Attractor Exponential Attractor Quasi-Stability
下载PDF
Comparable study on typhoon and strong northern wind characteristics of the Runyang Suspension Bridge based on field tests 被引量:4
5
作者 王浩 李爱群 +2 位作者 郭彤 谢静 胡若玫 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期99-103,共5页
The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measur... The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB. 展开更多
关键词 suspension bridge TYPHOON northern wind wind characteristics field test structural health monitoring system
下载PDF
Operational modal identification of suspension bridge based on structural health monitoring system 被引量:7
6
作者 李枝军 李爱群 韩晓林 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期104-107,共4页
An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The method... An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements. 展开更多
关键词 suspension bridge operational modal identification structural health monitoring system ambient vibration test
下载PDF
Measurement of wind field characteristics at a long-span suspension bridge 被引量:6
7
作者 胡俊 郭健 欧进萍 《Journal of Southeast University(English Edition)》 EI CAS 2011年第3期328-334,共7页
In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data ... In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data at the bridge deck and at the top of the bridge tower are recorded. The average wind speeds and directions, variations of wind speeds with height, turbulent characteristics, spatial correlation and characteristics of wind flow around the bridge deck are analyzed by using statistical methods and spectral analysis. It is found that the average wind speeds along the bridge girder are almost identical; however, the mean wind directions vary greatly at different locations. The dimensionless exponent decreases as the average wind speed increases. The measured turbulence intensities are greater than the recommended values, and the turbulence power spectrum can well fit the standard spectrum. However, the measured spectral values are considerably smaller in low frequency ranges. The mean wind speed of the wake flow decreases and the turbulence intensity increases significantly, and the spectral characteristics of the wake flow change obviously while the feature frequency of vortex shedding has not yet been observed. 展开更多
关键词 suspension bridge wind field structural health monitoring system field measurement
下载PDF
Finite element model updating and validating of Runyang Suspension Bridge based on SHMS 被引量:7
8
作者 王浩 李爱群 缪长青 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期474-479,共6页
Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response ... Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response under various load cases are given. A new method of FE model updating is presented based on the physical meaning of sensitivity and the penalty function concept. In this method, the structural model is updated by modifying the parameters of design, and validated by structural natural vibration characteristics, stress response as well as displacement response. The design parameters used for updating are bounded according to measured static response and engineering judgment. The FE model of RSB is updated and validated by the measurements coming from the structural health monitoring system (SHMS), and the FE baseline model reflecting the current state of RSB is achieved. Both the dynamic and static results show that the method is effective in updating the FE model of long span suspension bridges. The results obtained provide an important research basis for damage alarming and health monitoring of the RSB. 展开更多
关键词 suspension bridge finite element model updating model validating baseline model structural health monitoring system (SHMS)
下载PDF
Damage warning of suspension bridges based on neural networks under changing temperature conditions 被引量:2
9
作者 丁幼亮 李爱群 耿方方 《Journal of Southeast University(English Edition)》 EI CAS 2010年第4期586-590,共5页
This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial ... This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial neural network techniques to eliminate the temperature effects on the measured modal frequencies.Then,the measured modal frequencies under various temperatures are normalized to a reference temperature,based on which the auto-associative network is trained to monitor signal damage occurrences by means of neural-network-based novelty detection techniques.The effectiveness of the proposed approach is examined in the Runyang Suspension Bridge using 236-day health monitoring data.The results reveal that the seasonal change of environmental temperature accounts for variations in the measured modal frequencies with averaged variances of 2.0%.And the approach exhibits good capability for detecting the damage-induced 0.1% variance of modal frequencies and it is suitable for online condition monitoring of suspension bridges. 展开更多
关键词 structural damage detection modal frequency temperature neural network suspension bridge
下载PDF
Synthetical condition assessment of long span suspension bridge based on closeness degree and FAHP 被引量:1
10
作者 郭彤 李爱群 +1 位作者 赵大亮 王浩 《Journal of Southeast University(English Edition)》 EI CAS 2007年第2期261-265,共5页
Based on the theory of pattern recognition, the concept of closeness degree between fuzzy sets is brought into the condition assessment of long span bridges. Using the fuzzy analytic hierarchy process (FAHP), a math... Based on the theory of pattern recognition, the concept of closeness degree between fuzzy sets is brought into the condition assessment of long span bridges. Using the fuzzy analytic hierarchy process (FAHP), a mathematical model of a multi-objective assessment of a long span suspension bridge is set up. An example is given to show the procedure in the synthetical condition assessment of the Runyang Suspension Bridge, which includes the hierarchical division, the definition of factor weights and fuzzy membership functions, and the calculation of closeness degrees, etc. The assessment combines both the data from the health monitoring system and the manual tests. The classification of evaluation items as well as the calculation of deterministic and nondeterministic items is presented. Compared with the traditional method of point rating, this method can better describe the discreteness of monitoring data and the fuzziness in the condition assessment. 展开更多
关键词 pattern recognition fuzzy analytic hierarchy process closeness degree synthetical condition assessment suspension bridge
下载PDF
Spatial structural analysis of main saddle for single tower spatial cable self-anchored suspension bridge
11
作者 李建慧 李爱群 +1 位作者 袁辉辉 李喜平 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期372-375,共4页
Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is establish... Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is established by the secondary development technology based on the platform of the general finite element program, and a reasonable load pattern is used in its spatial structural analysis, by which its path of force transference and stress distribution are obtained. Matched with the spatial main cable, the tangency point correction method is also discussed. The results show that the lateral wall stress of the saddle groove is higher than the stress within the wall due to the role of lateral forces in the finished bridge state; the horizontal volume force of the main cable can generate a gradient distributed vertical extrusion pressure on the saddle clamping device and the main saddle body; the geometric nonlinear effect of the self- anchored suspension bridge cable system in the construction process is significant, which can be reflected in the spatial tangent point position of the main cable with the main saddle changes a lot from free cable to finished cable. 展开更多
关键词 self-anchored suspension bridge finite element main saddle spatial cable structural design
下载PDF
Dynamic Characteristics of Long -Span Steel -Concrete CompositeBeam Bridge Based on Vehicle -Bridge Coupling Effect
12
作者 WANG Jianxing CAI Ran +1 位作者 JIA Yumeng ZHANG Jianmeng 《吉首大学学报(自然科学版)》 CAS 2024年第5期45-51,共7页
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat... In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192. 展开更多
关键词 highway bridge vehicle-bridge coupling effect steel-concrete composite beam suspension bridge dynamic characteristics
下载PDF
Structural condition assessment of long-span suspension bridges using long-term monitoring data 被引量:12
13
作者 Deng Yang~+,Ding Youliang~(++) and Li Aiqun~§Key Laboratory of Concrete & Prestressed Concrete Structures of Ministry of Education,Southeast University,Nanjing 210096,China PhD Student ++ Assistant Professor ~§Professor 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期123-131,共9页
This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperatur... This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperature and beam-end displacement-temperature for the Runyang Suspension Bridge are performed, first. Then, a statistical modeling technique using a six-order polynomial is further applied to formulate the correlations of frequency-temperature and displacement-temperature, from which abnormal changes of measured frequencies and displacements are detected using the mean value control chart. Analysis results show that modal frequencies of higher vibration modes and displacements have remarkable seasonal correlations with the environmental temperature and the proposed method exhibits a good capability for detecting the micro damage-induced changes of modal frequencies and displacements. The results demonstrate that the proposed method can effectively eliminate temperature complications from frequency and displacement time series and is well suited for online condition monitoring of long-span suspension bridges. 展开更多
关键词 structural health monitoring modal frequency beam-end displacement TEMPERATURE seasonal correlation suspension bridge
下载PDF
Non-linear buffeting response analysis of long-span suspension bridges with central buckle 被引量:11
14
作者 Wang Hao1,2,Li Aiqun1,Zhao Gengwen1 and Li Jian2 1.College of Civil Engineering,Southeast University,Nanjing 210096,China 2.Civil and Environmental Engineering,University of Illinois at Urbana-Champaign,Urbana,IL 61801,USA 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期259-270,共12页
The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measur... The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data,a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented,in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future. 展开更多
关键词 suspension bridge buffeting response central buckle nonlinear time history analysis ANSYS
下载PDF
Structural health monitoring of long-span suspension bridges using wavelet packet analysis 被引量:8
15
作者 丁幼亮 李爱群 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第3期289-294,共6页
During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vib... During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations. 展开更多
关键词 structural health monitoring wavelet packet analysis wavelet packet energy spectrum ambient vibration test long-span suspension bridge
下载PDF
Determination of reasonable finished state of self-anchored suspension bridges 被引量:6
16
作者 李建慧 冯东明 +1 位作者 李爱群 袁辉辉 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期209-219,共11页
A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. ... A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. The initial hanger tensions are first obtained through an iterative analysis by combining the girder-tower-only finite element(FE) model with the analytical program for shape finding of the spatial cable system. These initial hanger tensions, together with the corresponding cable coordinates and internal forces, are then included into the FE model of the total bridge system, the nonlinear analysis of which involves the optimization technique. Calculations are repeated until the optimization algorithm converges to the most optimal hanger tensions(i.e. the desired reasonable finished bridge state). The "temperature rigid arm" is introduced to offset the unavoidable initial deformations of the girder and tower, which are due to the huge axial forces originated from the main cable. Moreover, by changing the stiffness coefficient K in the girder-tower-only FE model, the stiffness proportion of the main girder, the tower or the cable subsystem in the whole structural system could be adjusted according to the design intentions. The effectiveness of the proposed method is examined and demonstrated by one simple tutorial example and one self-anchored suspension bridge. 展开更多
关键词 self-anchored suspension bridge reasonable finished bridge state optimization algorithm finite element nonlinear relation
下载PDF
Test and numerical investigations on static and dynamic characteristics of extra-wide concrete self-anchored suspension bridge under vehicle loads 被引量:8
17
作者 ZHOU Guang-pan LI Ai-qun +1 位作者 LI Jian-hui DUAN Mao-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2382-2395,共14页
The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite... The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges. 展开更多
关键词 self-anchored suspension bridge extra-wide girder field test simulation vehicle loads increments distribution damping ratio mode shape dynamic impact coefficient
下载PDF
Numerical investigation of temperature gradient-induced thermal stress for steel–concrete composite bridge deck in suspension bridges 被引量:5
18
作者 WANG Da DENG Yang +1 位作者 LIU Yong-ming LIU Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期185-195,共11页
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit... A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study. 展开更多
关键词 suspension bridge steel–concrete composite bridge deck vertical temperature gradient finite element method thermal stress
下载PDF
Parametric analysis on buffeting performance of a long-span high-speed railway suspension bridge 被引量:5
19
作者 ZHAO Kai-yong WANG Hao +2 位作者 TAO Tian-you GAO Hui WU Tong 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2574-2588,共15页
The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantl... The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantly different from traditional suspension bridges,the first long-span high-speed railway suspension bridge,Wufengshan Yangtze River Bridge(WYRB),is taken as a numerical example to demonstrate the effects of structural parameters and wind field parameters on the buffeting responses.Based on the design information,the spatial finite element model(FEM)of WYRB is established before testing its accuracy.The fluctuating wind fields are simulated via both classical and stochastic wave based spectral representation method(SRM).Finite element method is further taken to analyze the parametric sensitivity on wind induced buffeting responses in time domain.The results show that the vertical displacement is more sensitive to the changing dead load than the lateral and torsional ones.The larger stiffness of the main girder and the lower sag-to-span ratio are both helpful to reduce the buffeting responses.Wind spectrum and coherence function are key influencing factors to the responses so setting proper wind field parameters are essential in the wind-resistant design stage.The analytical results can provide references for wind resistance analysis and selection of structural and fluctuating wind field parameters for similar long-span high-speed railway suspension bridges. 展开更多
关键词 high-speed railway suspension bridge buffeting performance numerical analysis parametric analysis wind field simulation
下载PDF
Performance-based system seismic assessment for long-span suspension bridges under two-level seismic hazard 被引量:5
20
作者 Lu Guanya Wang Kehai Zhang Panpan 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期464-475,共12页
Since there are few studies on the performance-based seismic evaluation of the long-span suspension bridge system under two-level earthquake hazard in Chinese code,the developed procedure of this study can be regarded... Since there are few studies on the performance-based seismic evaluation of the long-span suspension bridge system under two-level earthquake hazard in Chinese code,the developed procedure of this study can be regarded as a general program to assess the seismic performance of the overall system for long-span suspension bridges.In the procedure,the probabilistic seismic demand models of multiple bridge components were developed by nonlinear time-history analyses incorporating the related uncertainties,and the component-level fragility curves were calculated by the reasonable definition of limit states of the corresponding components in combination with seismic hazard analysis.The bridge repair cost ratios used to evaluate the system seismic performance were derived through the performance-based methodology and the damage probability of critical components.Furthermore,the repair cost ratios of the overall bridge system that was retrofitted with fluid viscous dampers for the main bridge and changed restraint systems for the approach bridges were compared.The results show that peak ground velocity and peak ground acceleration can be selected as the optimal intensity measurements of long-span suspension bridges using the TOPSIS(technique for order preference by similarity to an ideal solution).The bridge repair cost ratios can serve as accurate evaluation indicators to provide an efficient evaluation of retrofit measures.The seismic evaluation of long-span bridges is misled when ignoring the interaction of adjacent structures.However,the repair cost ratios of a bridge system that has optimum seismic performance are less sensitive to the relative importance of adjacent structures. 展开更多
关键词 suspension bridge fragility curve seismic hazard analysis repair cost ratio system seismic performance
下载PDF
上一页 1 2 209 下一页 到第
使用帮助 返回顶部