A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the resi...A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperatures to ambient temperature.The residual stress fields of mitigated damage sites for the CO_(2)laser-annealed case are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a complex thermal history.The calculated maximum hoop stress is in good agreement with the reported experimental result.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with the photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites after CO_(2)laser annealing.展开更多
Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then, the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration, -20ns, bul...Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then, the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration, -20ns, bulk diffusion is forbidden,and only surface diffusion occurs, resulting in a laser induced quantum dot (LIQD). The diameter of the LIQD is 20-25nm which is much smaller than the as-grown dot and the LIQD has a higher density of about 6 ×10^10cm^-2. The surface morphology evolution is investigated by AFM.展开更多
In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error m...In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable.展开更多
Polycrystalline Ge1-xSnx(poly-Ge1-xSnx) alloy thin films with high Sn content(〉 10%) were fabricated by cosputtering amorphous GeSna-GeSn on Ge100 wafers and subsequently pulsed laser annealing with laser energy ...Polycrystalline Ge1-xSnx(poly-Ge1-xSnx) alloy thin films with high Sn content(〉 10%) were fabricated by cosputtering amorphous GeSna-GeSn on Ge100 wafers and subsequently pulsed laser annealing with laser energy density in the range of 250 mJ/cm^2 to 550 mJ/cm^2. High quality poly-crystal Ge0.90 Sn0.10 and Ge0.82 Sn0.18 films with average grain sizes of 94 nm and 54 nm were obtained, respectively. Sn segregation at the grain boundaries makes Sn content in the poly-GeSn alloys slightly less than that in the corresponding primary a-GeSn. The crystalline grain size is reduced with the increase of the laser energy density or higher Sn content in the primary a-GeSn films due to the booming of nucleation numbers. The Raman peak shift of Ge-Ge mode in the poly crystalline GeSn can be attributed to Sn substitution, strain,and disorder. The dependence of Raman peak shift of the Ge-Ge mode caused by strain and disorder in GeSn films on full-width at half-maximum(FWHM) is well quantified by a linear relationship, which provides an effective method to evaluate the quality of poly-Ge1-xSnx by Raman spectra.展开更多
Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheat...Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheated Si (100) and Silica (111) substrates were used for annealing. Delicate treatment with 15.92 W/mm^2 power density resulted in crystallization of small spots; while 16.52 and 17.51 W/mm^2 power densities caused ablation of the amorphous layer. Optical microscopy, scanning electron microscopy, X-ray diffraction and atomic force microscopy were performed to characterize the microstructure and surface morphology of the amorphous/crystallized spot patterns.展开更多
The diffusion and the activation of phosphorus in phosphorus and fluorine co-implanted Ge after being annealed by excimer laser are investigated.The results prove that the fluorine element plays an important role in s...The diffusion and the activation of phosphorus in phosphorus and fluorine co-implanted Ge after being annealed by excimer laser are investigated.The results prove that the fluorine element plays an important role in suppressing phosphorus diffusion and enhancing phosphorus activation.Moreover,the rapid thermal annealing process is utilized to evaluate and verify the role of fluorine element.During the initial annealing of co-implanted Ge,it is easier to form high bonding energy FnVm clusters which can stabilize the excess vacancies,resulting in the reduced vacancy-assisted diffusion of phosphorus.The maximum activation concentration of about 4.4 ×10^(20) cm^(-3) with a reduced diffusion length and dopant loss is achieved in co-implanted Ge that is annealed at a tailored laser fluence of 175 mJ/cm^(2).The combination of excimer laser annealing and co-implantation technique provides a reference and guideline for high level n-type doping in Ge and is beneficial to its applications in the scaled Ge MOSFET technology and other devices.展开更多
A method to improve Ge n+/p junction diode performance by excimer laser annealing (ELA) and epitaxial Si passi- vation under a low ion implantation dose is demonstrated. The epitaxial Si passivation layer can unpin...A method to improve Ge n+/p junction diode performance by excimer laser annealing (ELA) and epitaxial Si passi- vation under a low ion implantation dose is demonstrated. The epitaxial Si passivation layer can unpin the Fermi level of the contact of Al/n-Ge to some extent and reduce the contact resistance. In addition, the fabricated Ge n :/p junction diode by ELA plus epitaxial Si passivation exhibits a decreased reverse current density and an increased forward current density, resulting in a rectification ratio of about 6.5 x 10^6 beyond two orders magnitude larger than that by ELA alone. The reduced specific contact resistivity of metal on n-doped germanium and well-behaved germanium n+/p diode arc beneficial for the performance improvement of Ge n-MOSFETs and other opto-electronic devices.展开更多
AlGaN/GaN high-electron-mobility transistors with Au-free ohmic contacts are fabricated by selective laser annealing and conventional rapid thermal annealing.The current transport mechanism of ohmic contacts is invest...AlGaN/GaN high-electron-mobility transistors with Au-free ohmic contacts are fabricated by selective laser annealing and conventional rapid thermal annealing.The current transport mechanism of ohmic contacts is investigated.High-temperature annealing can be avoided in the isolated region and the active region by selective laser annealing.The implanted isolation leakage current is maintained 10^(-6) mA/mm even at 1000 V after selective laser annealing.On the contrary,high-temperature annealing will cause obvious degradation of the isolation.The morphology of AlGaN surface is measured by atomic force microscope.No noticeable change of the AlGaN surface morphology after selective laser annealing,while the root-mean-square roughness value markedly increases after rapid thermal annealing.The smaller frequency dispersion of capacitance-voltage characteristics confirms the lower density of surface states after selective laser annealing.Thus,dynamic on-resistance is effectively suppressed.展开更多
We investigated the variation of permeability spectra and relaxation frequency in Co-based amorphous ribbon annealed by pulsed Nd:YAG laser at various annealing energy Ea. The complex permeability spectra varies sensi...We investigated the variation of permeability spectra and relaxation frequency in Co-based amorphous ribbon annealed by pulsed Nd:YAG laser at various annealing energy Ea. The complex permeability spectra varies sensitively with the annealing energy, where the spectra could be decomposed into two contributions from domain wall motion,μdw(f) and rotational magnetization μrot(f) by analyzing the measured spectra as a function of driving ac field amplitude. The magnitude of μdw(f) and μrot(f) in dc limit shows maximum at Ea = 176 mJ. The maximum relaxation frequency for rotational magnetization, determined by μ'(f) curve, is about 700 kHz at Ea=62 mJ but that for wall motion is about 26 kHz at 230 mJ. These variations reflect the increase of magnetic softness and microstructural change by the annealing.展开更多
The physical mechanisms of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures by laser annealing and rapid thermal annealing are systematically investigated. The microstructures indicate that a better surface mo...The physical mechanisms of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures by laser annealing and rapid thermal annealing are systematically investigated. The microstructures indicate that a better surface morphology and an intact contact interface are formed after laser annealing. None of the TiN alloy spikes are formed at the interface of the laser annealing sample. The experimental results show that the current transport mechanism through the ohmic contact after laser annealing is different from the conventional spike mechanism, and it is dominated by thermionic field emission.展开更多
In this work ITO thin film annealing was carried out using a CW CO2 laser beam for ITO thin film annealing over a 1 cm2 area with a temperature higher than 250°C to obtain ITO grains with excellent structural qua...In this work ITO thin film annealing was carried out using a CW CO2 laser beam for ITO thin film annealing over a 1 cm2 area with a temperature higher than 250°C to obtain ITO grains with excellent structural quality thin films. The obtained ITO films were characterized for crystallization, surface morphology, electrical and optical properties, which has theoretical significance and application value. ITO thin films are deposited on glass substrates by sputter coater system (RF) from a high density target (In2O3-SnO2, 90-10 wt%). After deposition, ITO thin films have been irradiated by CW CO2 laser (λ = 10.6 μm) with power ranging from 1 to 10 watt. These films were annealed at temperatures 250°C, 350°C, and 450°C in the air for 20 minutes using different laser power. The main incentive was to develop a low temperature process for ITO thin films, which typically required a 350°C anneal to crystallize and achieve optimum optical and electrical properties. The XRD results showed that 350°C temperature laser annealing could crystallize ITO with a strong (222) preferred orientation and its grain size increased from 29.27 nm to 48.63 nm. The structure, optical transmission, energy gap, resistivity and sheet resistance of the ITO thin films were systematically investigated as a function of laser post annealing temperature. It was found that the lowest resistivity was 2.9 × 10-4 Ω-cm and that sheet resistance was 14.5 Ω/sq. And the highest optical transmittance (98.65%) of ITO films was obtained at 350°C annealing temperature.展开更多
Laser annealing of silicon dioxide (SiO2) film formed by inductively coupled plasma enhanced chemical vapor deposition (ICPECVD)is studied for the fabrication of low loss silicon based waveguide. The influence of ...Laser annealing of silicon dioxide (SiO2) film formed by inductively coupled plasma enhanced chemical vapor deposition (ICPECVD)is studied for the fabrication of low loss silicon based waveguide. The influence of laser annealing on ICPECVD-deposited SiO2 film is investigated. The surface roughness, refractive index, and etch rate of annealed samples are compared with those of SiO2 film obtained by thermal oxidation. It is demonstrated that the performance of ICPECVD-deposited SiO2 film can be significantly improved by laser annealing. Al2O3/SIO2 waveguide has been fabricated on silicon substrate with the SiO2 lower cladding formed by ICPECVD and laser annealing process, and its propagation loss is found to be comparable with that of the waveguide with thermally oxidized lower cladding.展开更多
Defective TiO2 has attracted increasing attention for use in photocatalytic and electrochemical materials because of its narrowed band-gap and improved visible-light photocatalytic activity. However, a facile and effi...Defective TiO2 has attracted increasing attention for use in photocatalytic and electrochemical materials because of its narrowed band-gap and improved visible-light photocatalytic activity. However, a facile and efficient approach for obtaining defect-rich TiO2 still remains a challenge. Herein, we demonstrate such an approach to narrow its bandgap and improve visible-light absorption through implanting abundant defects by aerodynamic levitated laser annealing (ALLA) treatment. Note that the ALLA method not only provides rapid annealing, solidifying and cooling process, but also exhibits high efficiency for homogeneous and defective TiO2 nanoparticles. The laser-annealed TiO2 achieves a high hydrogen evolution rate of 8.54 mmol.h-1.g-1, excellent decomposition properties within 60 min, and outstanding recyclability and stability, all of which are superior to the corresponding properties of commercial P25.展开更多
We demonstrate a novel high-accuracy post-fabrication trimming technique to fine-tune the phase of integrated Mach–Zehnder interferometers, enabling permanent correction of typical fabrication-based phase errors. The...We demonstrate a novel high-accuracy post-fabrication trimming technique to fine-tune the phase of integrated Mach–Zehnder interferometers, enabling permanent correction of typical fabrication-based phase errors. The effective index change of the optical mode is 0.19 in our measurement, which is approximately an order of magnitude improvement compared to previous work with similar excess optical loss. Our measurement results suggest that a phase accuracy of 0.078 rad was achievable with active feedback control.展开更多
Molecular dynamic simulation is performed to study the process of material annealing caused by a 266 nm pulsed laser. A micro-mechanism describing behaviors of silicon and impurity atoms during the laser annealing at ...Molecular dynamic simulation is performed to study the process of material annealing caused by a 266 nm pulsed laser. A micro-mechanism describing behaviors of silicon and impurity atoms during the laser annealing at a non-melt regime is proposed. After ion implantation, the surface of the Si wafer is acted by a high energy laser pulse, which loosens the material and partially frees both Si and impurity atoms. While the residual laser energy is absorbed by valence electrons, these atoms are recoiled and relocated to finally form a crystal. Energyrelated movement behavior is observed by using the molecular dynamic method. The non-melt laser anneal appears to be quite sensitive to the energy density of the laser, as a small excess energy may causes a significant impurity diffusion. Such a result is also supported by our laser anneal experiment.展开更多
Laser surface annealing provides a rapid and efficient means for surface alloying and modification of ceramic materials. In this study, Alumina-13% Titania coatings were sprayed with a water-stabilized plasma spray gu...Laser surface annealing provides a rapid and efficient means for surface alloying and modification of ceramic materials. In this study, Alumina-13% Titania coatings were sprayed with a water-stabilized plasma spray gun. The coated surface was treated by Excimer laser having a wavelength of 248 nm and pulse duration of 24 ns. The surface structure of the treated coating was examined by field emission scanning electron microscope and X-ray diffraction (XRD). A detailed analysis of the effects of various laser parameters including laser energy density (fluence), pulse repetition rate (PRR), and number of pulses on the morphology and the microstructure of the coatings are presented.展开更多
Nickel is an excellent ohmic-contact metal on 4H-SiC.This paper discusses the formation mechanism of nickel ohmic contact on 4HSiC by assessing the electrical properties and microstructural change.Under high-temperatu...Nickel is an excellent ohmic-contact metal on 4H-SiC.This paper discusses the formation mechanism of nickel ohmic contact on 4HSiC by assessing the electrical properties and microstructural change.Under high-temperature annealing,the phase of nickel-silicon compound can be observed with X-ray diffraction,and the contact resistance also changes.A comparative experiment was designed to use X-ray diffraction and energy-dispersive spectroscopy to clarify the difference of ohmic-contact material composition and elemental analysis between samples prepared using pulsed laser annealing and rapid thermal annealing.It is found that more Ni2Si and carbon vacancies formed at the interface in the sample prepared using pulsed laser annealing,resulting in a better ohmic-contact characteristic.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62275235).
文摘A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperatures to ambient temperature.The residual stress fields of mitigated damage sites for the CO_(2)laser-annealed case are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a complex thermal history.The calculated maximum hoop stress is in good agreement with the reported experimental result.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with the photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites after CO_(2)laser annealing.
文摘Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then, the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration, -20ns, bulk diffusion is forbidden,and only surface diffusion occurs, resulting in a laser induced quantum dot (LIQD). The diameter of the LIQD is 20-25nm which is much smaller than the as-grown dot and the LIQD has a higher density of about 6 ×10^10cm^-2. The surface morphology evolution is investigated by AFM.
基金Projects(2012ZX04010-011,2009ZX02037-02) supported by the Key National Science and Technology Project of China
文摘In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable.
基金Project supported by the National Natural Science Foundation of China(Grant No.61474094)the National Basic Research Program of China(Grant No.2013CB632103)
文摘Polycrystalline Ge1-xSnx(poly-Ge1-xSnx) alloy thin films with high Sn content(〉 10%) were fabricated by cosputtering amorphous GeSna-GeSn on Ge100 wafers and subsequently pulsed laser annealing with laser energy density in the range of 250 mJ/cm^2 to 550 mJ/cm^2. High quality poly-crystal Ge0.90 Sn0.10 and Ge0.82 Sn0.18 films with average grain sizes of 94 nm and 54 nm were obtained, respectively. Sn segregation at the grain boundaries makes Sn content in the poly-GeSn alloys slightly less than that in the corresponding primary a-GeSn. The crystalline grain size is reduced with the increase of the laser energy density or higher Sn content in the primary a-GeSn films due to the booming of nucleation numbers. The Raman peak shift of Ge-Ge mode in the poly crystalline GeSn can be attributed to Sn substitution, strain,and disorder. The dependence of Raman peak shift of the Ge-Ge mode caused by strain and disorder in GeSn films on full-width at half-maximum(FWHM) is well quantified by a linear relationship, which provides an effective method to evaluate the quality of poly-Ge1-xSnx by Raman spectra.
文摘Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheated Si (100) and Silica (111) substrates were used for annealing. Delicate treatment with 15.92 W/mm^2 power density resulted in crystallization of small spots; while 16.52 and 17.51 W/mm^2 power densities caused ablation of the amorphous layer. Optical microscopy, scanning electron microscopy, X-ray diffraction and atomic force microscopy were performed to characterize the microstructure and surface morphology of the amorphous/crystallized spot patterns.
基金Project supported by the National Natural Science Foundation of China(Grant No.61904155)the Science and technology Project of Fujian Provincial Department of Education,China(Grant No.JAT200484)+1 种基金the Natural Science Foundation of Fujian Province,China(Grant No.2018J05115)the Scientific Research Projects of Xiamen University of Technology,China(Grant No.YKJCX2020078).
文摘The diffusion and the activation of phosphorus in phosphorus and fluorine co-implanted Ge after being annealed by excimer laser are investigated.The results prove that the fluorine element plays an important role in suppressing phosphorus diffusion and enhancing phosphorus activation.Moreover,the rapid thermal annealing process is utilized to evaluate and verify the role of fluorine element.During the initial annealing of co-implanted Ge,it is easier to form high bonding energy FnVm clusters which can stabilize the excess vacancies,resulting in the reduced vacancy-assisted diffusion of phosphorus.The maximum activation concentration of about 4.4 ×10^(20) cm^(-3) with a reduced diffusion length and dopant loss is achieved in co-implanted Ge that is annealed at a tailored laser fluence of 175 mJ/cm^(2).The combination of excimer laser annealing and co-implantation technique provides a reference and guideline for high level n-type doping in Ge and is beneficial to its applications in the scaled Ge MOSFET technology and other devices.
基金Project supported by the High Level Talent Project of Xiamen University of Technology,China(Grant No.YKJ16012R)
文摘A method to improve Ge n+/p junction diode performance by excimer laser annealing (ELA) and epitaxial Si passi- vation under a low ion implantation dose is demonstrated. The epitaxial Si passivation layer can unpin the Fermi level of the contact of Al/n-Ge to some extent and reduce the contact resistance. In addition, the fabricated Ge n :/p junction diode by ELA plus epitaxial Si passivation exhibits a decreased reverse current density and an increased forward current density, resulting in a rectification ratio of about 6.5 x 10^6 beyond two orders magnitude larger than that by ELA alone. The reduced specific contact resistivity of metal on n-doped germanium and well-behaved germanium n+/p diode arc beneficial for the performance improvement of Ge n-MOSFETs and other opto-electronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51577169 and 51777187)the National Key Research and Development Program of China(Grant No.2017YFB0402804)the“Science and Technology Innovation 2025”Major Program of Ningbo(Grant No.2018B10098).
文摘AlGaN/GaN high-electron-mobility transistors with Au-free ohmic contacts are fabricated by selective laser annealing and conventional rapid thermal annealing.The current transport mechanism of ohmic contacts is investigated.High-temperature annealing can be avoided in the isolated region and the active region by selective laser annealing.The implanted isolation leakage current is maintained 10^(-6) mA/mm even at 1000 V after selective laser annealing.On the contrary,high-temperature annealing will cause obvious degradation of the isolation.The morphology of AlGaN surface is measured by atomic force microscope.No noticeable change of the AlGaN surface morphology after selective laser annealing,while the root-mean-square roughness value markedly increases after rapid thermal annealing.The smaller frequency dispersion of capacitance-voltage characteristics confirms the lower density of surface states after selective laser annealing.Thus,dynamic on-resistance is effectively suppressed.
文摘We investigated the variation of permeability spectra and relaxation frequency in Co-based amorphous ribbon annealed by pulsed Nd:YAG laser at various annealing energy Ea. The complex permeability spectra varies sensitively with the annealing energy, where the spectra could be decomposed into two contributions from domain wall motion,μdw(f) and rotational magnetization μrot(f) by analyzing the measured spectra as a function of driving ac field amplitude. The magnitude of μdw(f) and μrot(f) in dc limit shows maximum at Ea = 176 mJ. The maximum relaxation frequency for rotational magnetization, determined by μ'(f) curve, is about 700 kHz at Ea=62 mJ but that for wall motion is about 26 kHz at 230 mJ. These variations reflect the increase of magnetic softness and microstructural change by the annealing.
基金supported by the National Natural Science Foundation of China(Grant Nos.51577169 and 51777187)the National Key Research and Development Program of China(Grant No.2017YFB0402804)
文摘The physical mechanisms of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures by laser annealing and rapid thermal annealing are systematically investigated. The microstructures indicate that a better surface morphology and an intact contact interface are formed after laser annealing. None of the TiN alloy spikes are formed at the interface of the laser annealing sample. The experimental results show that the current transport mechanism through the ohmic contact after laser annealing is different from the conventional spike mechanism, and it is dominated by thermionic field emission.
文摘In this work ITO thin film annealing was carried out using a CW CO2 laser beam for ITO thin film annealing over a 1 cm2 area with a temperature higher than 250°C to obtain ITO grains with excellent structural quality thin films. The obtained ITO films were characterized for crystallization, surface morphology, electrical and optical properties, which has theoretical significance and application value. ITO thin films are deposited on glass substrates by sputter coater system (RF) from a high density target (In2O3-SnO2, 90-10 wt%). After deposition, ITO thin films have been irradiated by CW CO2 laser (λ = 10.6 μm) with power ranging from 1 to 10 watt. These films were annealed at temperatures 250°C, 350°C, and 450°C in the air for 20 minutes using different laser power. The main incentive was to develop a low temperature process for ITO thin films, which typically required a 350°C anneal to crystallize and achieve optimum optical and electrical properties. The XRD results showed that 350°C temperature laser annealing could crystallize ITO with a strong (222) preferred orientation and its grain size increased from 29.27 nm to 48.63 nm. The structure, optical transmission, energy gap, resistivity and sheet resistance of the ITO thin films were systematically investigated as a function of laser post annealing temperature. It was found that the lowest resistivity was 2.9 × 10-4 Ω-cm and that sheet resistance was 14.5 Ω/sq. And the highest optical transmittance (98.65%) of ITO films was obtained at 350°C annealing temperature.
基金This work was supported by the National Basic Research Program of China (Nos. 2012CB315605 and 2014CB340002), the National Natural Science Foundation of China (Grant Nos. 61210014,61321004, 61307024, 61574082 and 51561165012), the High Technology Researeh and Development Program of China(No. 2015AA017101), the Independent Research Program of Tsinghua University (No. 20131089364) and the Open Fund of State Key Laboratory on Integrated Optoelectronics (Nos. IOSKL2012KF08 and IOSKL2014KF09).
文摘Laser annealing of silicon dioxide (SiO2) film formed by inductively coupled plasma enhanced chemical vapor deposition (ICPECVD)is studied for the fabrication of low loss silicon based waveguide. The influence of laser annealing on ICPECVD-deposited SiO2 film is investigated. The surface roughness, refractive index, and etch rate of annealed samples are compared with those of SiO2 film obtained by thermal oxidation. It is demonstrated that the performance of ICPECVD-deposited SiO2 film can be significantly improved by laser annealing. Al2O3/SIO2 waveguide has been fabricated on silicon substrate with the SiO2 lower cladding formed by ICPECVD and laser annealing process, and its propagation loss is found to be comparable with that of the waveguide with thermally oxidized lower cladding.
基金This work is financially supported by the National Natural Science Foundation of China (Nos. 51471158, 51674232 and 51274182) and Beijing Natural Science Foundation (Nos. 2152032 and 2112039).
文摘Defective TiO2 has attracted increasing attention for use in photocatalytic and electrochemical materials because of its narrowed band-gap and improved visible-light photocatalytic activity. However, a facile and efficient approach for obtaining defect-rich TiO2 still remains a challenge. Herein, we demonstrate such an approach to narrow its bandgap and improve visible-light absorption through implanting abundant defects by aerodynamic levitated laser annealing (ALLA) treatment. Note that the ALLA method not only provides rapid annealing, solidifying and cooling process, but also exhibits high efficiency for homogeneous and defective TiO2 nanoparticles. The laser-annealed TiO2 achieves a high hydrogen evolution rate of 8.54 mmol.h-1.g-1, excellent decomposition properties within 60 min, and outstanding recyclability and stability, all of which are superior to the corresponding properties of commercial P25.
基金Engineering and Physical Sciences Research Council(EPSRC)(EP/L00044X/1,EP/M022757/1)Wolfson FoundationRoyal Society
文摘We demonstrate a novel high-accuracy post-fabrication trimming technique to fine-tune the phase of integrated Mach–Zehnder interferometers, enabling permanent correction of typical fabrication-based phase errors. The effective index change of the optical mode is 0.19 in our measurement, which is approximately an order of magnitude improvement compared to previous work with similar excess optical loss. Our measurement results suggest that a phase accuracy of 0.078 rad was achievable with active feedback control.
文摘Molecular dynamic simulation is performed to study the process of material annealing caused by a 266 nm pulsed laser. A micro-mechanism describing behaviors of silicon and impurity atoms during the laser annealing at a non-melt regime is proposed. After ion implantation, the surface of the Si wafer is acted by a high energy laser pulse, which loosens the material and partially frees both Si and impurity atoms. While the residual laser energy is absorbed by valence electrons, these atoms are recoiled and relocated to finally form a crystal. Energyrelated movement behavior is observed by using the molecular dynamic method. The non-melt laser anneal appears to be quite sensitive to the energy density of the laser, as a small excess energy may causes a significant impurity diffusion. Such a result is also supported by our laser anneal experiment.
文摘Laser surface annealing provides a rapid and efficient means for surface alloying and modification of ceramic materials. In this study, Alumina-13% Titania coatings were sprayed with a water-stabilized plasma spray gun. The coated surface was treated by Excimer laser having a wavelength of 248 nm and pulse duration of 24 ns. The surface structure of the treated coating was examined by field emission scanning electron microscope and X-ray diffraction (XRD). A detailed analysis of the effects of various laser parameters including laser energy density (fluence), pulse repetition rate (PRR), and number of pulses on the morphology and the microstructure of the coatings are presented.
基金supported by Shenzhen Science and Technology Program(Grant No.KQTD2017033016491218).
文摘Nickel is an excellent ohmic-contact metal on 4H-SiC.This paper discusses the formation mechanism of nickel ohmic contact on 4HSiC by assessing the electrical properties and microstructural change.Under high-temperature annealing,the phase of nickel-silicon compound can be observed with X-ray diffraction,and the contact resistance also changes.A comparative experiment was designed to use X-ray diffraction and energy-dispersive spectroscopy to clarify the difference of ohmic-contact material composition and elemental analysis between samples prepared using pulsed laser annealing and rapid thermal annealing.It is found that more Ni2Si and carbon vacancies formed at the interface in the sample prepared using pulsed laser annealing,resulting in a better ohmic-contact characteristic.