Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas...Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.展开更多
A two-phase approach is proposed to deal with the integration problem in theloop layout. Tabu search is applied to cell construction in phase 1 to minimize the inter-cell flow,and the heuristic for layout design is us...A two-phase approach is proposed to deal with the integration problem in theloop layout. Tabu search is applied to cell construction in phase 1 to minimize the inter-cell flow,and the heuristic for layout design is used as phase 2 to optimize the sum of intra-cell andinter-cell transportation cost. The final computational results demonstrate the validation of thetwo-phase approach.展开更多
The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure cons...The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure construction and seed selection are studied, so as to make it possible to improve the effectiveness and applicability of the adaptive growth method in stiffener layout design optimization of plates and shells. Three schemes of ground structures, which are comprised by different shell elements and beam elements, are proposed. It is found that the main stiffener layouts resulted from different ground structures are almost the same, but the ground structure comprised by 8-nodes shell elements and both 3-nodes and 2-nodes beam elements can result in clearest stiffener layout, and has good adaptability and low computational cost. An automatic seed selection approach is proposed, which is based on such selection rules that the seeds should be positioned on where the structural strain energy is great for the minimum compliance problem, and satisfy the dispersancy requirement. The adaptive growth method with the suggested key techniques is integrated into an ANSYS-based program, which provides a design tool for the stiffener layout design optimization of plates and shells. Typical design examples, including plate and shell structures to achieve minimum compliance and maximum bulking stability are illustrated. In addition, as a practical mechanical structural design example, the stiffener layout of an inlet structure for a large-scale electrostatic precipitator is also demonstrated. The design results show that the adaptive growth method integrated with the suggested key techniques can effectively and flexibly deal with stiffener layout design problem for plates and shells with complex geometrical shape and loading conditions to achieve various design objectives, thus it provides a new solution method for engineering structural topology design optimization.展开更多
The integrated layout problem in manufacturing Systems is investigated. Anintegrated model for Concurrent layout design of cells and flow paths is formulated. A hybridapproach combined an enhanced branch-and-bound alg...The integrated layout problem in manufacturing Systems is investigated. Anintegrated model for Concurrent layout design of cells and flow paths is formulated. A hybridapproach combined an enhanced branch-and-bound algorithm with a simulated annealing scheme isproposed to solve this problem. The integrated layout method is applied to re-layout the gear pumpshop of a medium-size manufacturer of hydraulic pieces. Results show that the proposed layout methodcan concurrently provide good solutions of the cell layouts and the flow path layouts.展开更多
Four-dimensional(4D)printing is an advanced form of three-dimensional(3D)printing with controllable and programmable shape transformation over time.Actuators are used as a controlling factor with multi-stage shape rec...Four-dimensional(4D)printing is an advanced form of three-dimensional(3D)printing with controllable and programmable shape transformation over time.Actuators are used as a controlling factor with multi-stage shape recovery,with emerging opportunities to customize the mechanical properties of bio-inspired structures.The print pattern of shape memory polymer(SMP)fbers strongly afects the achievable resolution,and consequently infuences several other physical and mechanical properties of fabricated actuators.However,the deformations of bio-inspired structures due to actuator layout are more complex because of the presence of the coupling of multi-directional strain.In this study,the initial structure was designed from closed-shell behavior and divided into a general unit and actuator unit,the latter responsible for driving the transformation.Mutual stress confrontation between the actuator and the general unit was considered in the layout thermodynamic model,in order to eliminate the transformation produced by the uncontrolled shape memory behavior of the general unit.Three critical and efective strategies for the layout design of actuators were proposed and then applied to achieve the desired accurate deformation of 3D-printed bilayer structures.Finally,the proposed approach was validated and adopted for fabricating a complex shell-like gripper structure.展开更多
The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly ...The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly affect product quality.In this paper,we review the methods of cable layout design,cable assembly process planning,and cable assembly simulation.We first review research on flexible cable layout design(both interactive and automatic).Then,research on the cable assembly process planning,including cable assembly path and manipulation planning,is reviewed.Finally,cable assembly simulation is introduced,which includes general cable information,cable collision detection data,and cable assembly process modeling.Current problems and future research directions are summarized at the end of the paper.展开更多
The research study proposes to examine a three-dimensional visualization program, emphasizing on improving genetic algorithms through the optimization of a layout design-based standard and discrete shipbuilding worksh...The research study proposes to examine a three-dimensional visualization program, emphasizing on improving genetic algorithms through the optimization of a layout design-based standard and discrete shipbuilding workshop. By utilizing a steel processing workshop as an example, the principle of minimum logistic costs will be implemented to obtain an ideological equipment layout, and a mathematical model. The objectiveness is to minimize the total necessary distance traveled between machines. An improved control operator is implemented to improve the iterative efficiency of the genetic algorithm, and yield relevant parameters. The Computer Aided Tri-Dimensional Interface Application (CATIA) software is applied to establish the manufacturing resource base and parametric model of the steel processing workshop. Based on the results of optimized planar logistics, a visual parametric model of the steel processing workshop is constructed, and qualitative and quantitative adjustments then are applied to the model. The method for evaluating the results of the layout is subsequently established through the utilization of AHP. In order to provide a mode of reference to the optimization and layout of the digitalized production workshop, the optimized discrete production workshop will possess a certain level of practical significance.展开更多
From the perspective of humanized design concepts, humanized space design and behavioral psychological needs of users were re-interpreted and analyzed, basic elements and design principles of cultural plaza spatial la...From the perspective of humanized design concepts, humanized space design and behavioral psychological needs of users were re-interpreted and analyzed, basic elements and design principles of cultural plaza spatial layout were proposed. Particularly, application and role of humanized design in the spatial layout of cultural plaza was analyzed, on the basis of which humanized design objective and orientation for the sustainable development of cultural plaza was defined.展开更多
In this paper,the thin-walled structures with lattices and stiffeners manufactured by additive manufacturing are investigated.A design method based on the multi-material topology optimization is proposed for the simul...In this paper,the thin-walled structures with lattices and stiffeners manufactured by additive manufacturing are investigated.A design method based on the multi-material topology optimization is proposed for the simultaneous layout optimization of the lattices and stiffeners in thin-walled structures.First,the representative lattice units of the selected lattices are equivalent to the virtual homogeneous materials whose effective elastic matrixes are achieved by the energy-based homogenization method.Meanwhile,the stiffeners are modelled using the solid material.Subsequently,the multi-material topology optimization formulation is established for both the virtual homogeneous materials and solid material to minimize the structural compliance under mass constraint.Thus,the optimal layout of both the lattices and stiffeners could be simultaneously attained by the optimization procedure.Two applications,the aircraft panel structure and the equipment mounting plate,are dealt with to demonstrate the detailed design procedure and reveal the effect of the proposed method.According to numerical comparisons and experimental results,the thin-walled structures with lattices and stiffeners have significant advantages over the traditional stiffened thin-walled structures and lattice sandwich structures in terms of static,dynamic and anti-instability performance.展开更多
Geodashboards are often designed with explanatory elements guiding users.These elements(e.g.legends or annotations)need to be carefully designed to mitigate split attention or information integration issues.In this pa...Geodashboards are often designed with explanatory elements guiding users.These elements(e.g.legends or annotations)need to be carefully designed to mitigate split attention or information integration issues.In this paper,we report expert interviews followed by a controlled experiment where we compare two interface designs with a focus on the split attention effect:(1)a multiple-legend layout with explanatory elements located next to each view,and(2)a single-legend layout with all explanatory elements gathered in one place.Different legend layouts did not affect the performance,but affected user satisfaction.75%of the participants preferred the multiple-legend layout,and rated it with a higher usability score,mainly attributing this preference to the proximity of legend elements to the view of interest.Eye tracking data strongly and clearly verifies that participants indeed make use of the proximity:With the single-legend,the majority of eye-movement transitions were between the single-legend and the closest view to the legend,whereas with multiple-legend participants have shorter and more frequent legend visits,as well as more transitions between legends and views.Taken together,the design lesson we learned from this experiment can be summarized as‘split the legend elements,but make it close to the explained elements’.展开更多
In this paper we propose a COncurrent Production Engineering System (COPES) for the flexible transfer line (FTL) layout design in a restricted area. COPES first determines the buffer size in front of the bay of ea...In this paper we propose a COncurrent Production Engineering System (COPES) for the flexible transfer line (FTL) layout design in a restricted area. COPES first determines the buffer size in front of the bay of each machine tool in the FTL and then initializes a computer aided design (CAD) system to draw the FTL in a restricted area. We develop a set of modules systems which have been integrated into a single framework, in accordance with the practice of concurrent engineering. Concurrent engineering involves the cooperation of these activities. It's expected that the developed COPES can improve the cooperation between production engineers' and the plant designer. This can be done by enabling the production engineers' to make better decision regarding FTL buffer size.展开更多
Green manufacturing is a growing trend,and an effective layout design method for production lines can reduce resource wastage in processing.This study focuses on existing problems such as low equipment utilization,lon...Green manufacturing is a growing trend,and an effective layout design method for production lines can reduce resource wastage in processing.This study focuses on existing problems such as low equipment utilization,long standby time,and low logistics efficiency in a mixed-flow parallel production line.To reduce the energy consumption,a novel method considering an independent buffer configuration and idle energy consumption analysis is proposed for this production line’s layout design.A logistics intensity model and a machine tool availability model are established to investigate the influences of independent buffer area configuration on the logistics intensity and machine tool availability.To solve the coupling problem between machine tools in such production lines,a decoupling strategy for the relationship between machine tool processing rates is explored.An energy consumption model for the machine tools,based on an optimized configuration of independent buffers,is proposed.This model can effectively reduce the idle energy consumption of the machine tools while designing the workshop layout.Subsequently,considering the problems encountered in workshop production,a comprehensive optimization model for the mixed-flow production line is developed.To verify the effectiveness of the mathematical model,it is applied to an aviation cabin production line.The results indicate that it can effectively solve the layout problem of mixed-flow parallel production lines and reduce the idle energy consumption of machine tools during production.The proposed buffer configuration and layout design method can serve as a theoretical and practical reference for the layout design of mixed-flow parallel production lines.展开更多
The marketing channel of handset is always a hot point. This paper studies the influence of the website's guiding interface design on the internet marketing of handset; establishes the conceptual model about the rela...The marketing channel of handset is always a hot point. This paper studies the influence of the website's guiding interface design on the internet marketing of handset; establishes the conceptual model about the relationships between page layout, page views and internet marketing performance; puts forward some operable suggestions for website master and handset manufacturer.展开更多
This paper presents a method for the automatic generation of a spatial architectural layout from a user-specified architectural program. The proposed approach binds a multi-agent topology finding system and an evoluti...This paper presents a method for the automatic generation of a spatial architectural layout from a user-specified architectural program. The proposed approach binds a multi-agent topology finding system and an evolutionary optimization process. The former generates topology satisfied layouts for further optimization, while the latter focuses on refining the layouts to achieve predefined architectural criteria. The topology finding process narrows the search space and increases the performance in subsequent optimization. Results imply that the spatial layout modeling and the muLti-floor topology are handled.展开更多
Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations.Optimizing perforation designs is critical for augmenting the...Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations.Optimizing perforation designs is critical for augmenting the efficacy of hydraulic fracturing and boosting oil or gas production.In this study,we employ a hybrid finite-discrete element method,known as the continuous–discontinuous element method(CDEM),to simulate the initiation of post-perforation hydraulic fractures and to derive enhanced design parameters.The model incorporates the four most prevalent perforation geometries,as delineated in an engineering technical report.Real-world perforations deviate from the ideal cylindrical shape,exhibiting variable cross-sectional profiles that typically manifest as an initial constriction followed by an expansion,a feature consistent across all four perforation types.Our simulations take into account variations in perforation hole geometries,cross-sectional diameters,and perforation lengths.The findings show that perforations generated by the 39g DP3 HMX perforating bullet yield the lowest breakdown pressure,which inversely correlates with increases in sectional diameter and perforation length.Moreover,this study reveals the relationship between breakdown pressure and fracture degree,providing valuable insights for engineers and designers to refine perforation strategies.展开更多
基金the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Province.It was also supported in part by Young Elite Scientists Sponsorship Program by CAST.
文摘Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.
基金This project is supported by National Natural Science Foundation of China (No.59889505, No.70071017).
文摘A two-phase approach is proposed to deal with the integration problem in theloop layout. Tabu search is applied to cell construction in phase 1 to minimize the inter-cell flow,and the heuristic for layout design is used as phase 2 to optimize the sum of intra-cell andinter-cell transportation cost. The final computational results demonstrate the validation of thetwo-phase approach.
基金supported by National Natural Science Foundation of China(Grants No.50875174,51175347)Innovation Program of Shanghai Municipal Education Commission(Grant No.13ZZ114)Capacity Building Project of Local University of Shanghai Municipal Science and Technology Commission(Grant No.13160502500)
文摘The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure construction and seed selection are studied, so as to make it possible to improve the effectiveness and applicability of the adaptive growth method in stiffener layout design optimization of plates and shells. Three schemes of ground structures, which are comprised by different shell elements and beam elements, are proposed. It is found that the main stiffener layouts resulted from different ground structures are almost the same, but the ground structure comprised by 8-nodes shell elements and both 3-nodes and 2-nodes beam elements can result in clearest stiffener layout, and has good adaptability and low computational cost. An automatic seed selection approach is proposed, which is based on such selection rules that the seeds should be positioned on where the structural strain energy is great for the minimum compliance problem, and satisfy the dispersancy requirement. The adaptive growth method with the suggested key techniques is integrated into an ANSYS-based program, which provides a design tool for the stiffener layout design optimization of plates and shells. Typical design examples, including plate and shell structures to achieve minimum compliance and maximum bulking stability are illustrated. In addition, as a practical mechanical structural design example, the stiffener layout of an inlet structure for a large-scale electrostatic precipitator is also demonstrated. The design results show that the adaptive growth method integrated with the suggested key techniques can effectively and flexibly deal with stiffener layout design problem for plates and shells with complex geometrical shape and loading conditions to achieve various design objectives, thus it provides a new solution method for engineering structural topology design optimization.
基金This project is supported by National Natural Science Foundation of China (No.59990470)Doctoral Foundation of Ministry of Education, China(No.20010487024).
文摘The integrated layout problem in manufacturing Systems is investigated. Anintegrated model for Concurrent layout design of cells and flow paths is formulated. A hybridapproach combined an enhanced branch-and-bound algorithm with a simulated annealing scheme isproposed to solve this problem. The integrated layout method is applied to re-layout the gear pumpshop of a medium-size manufacturer of hydraulic pieces. Results show that the proposed layout methodcan concurrently provide good solutions of the cell layouts and the flow path layouts.
基金the National Natural Science Foundation of China(Nos.51805472,51775489,and 51975386)the Natural Science Foundation of Zhejiang Province,China(No.LZ21E050004).
文摘Four-dimensional(4D)printing is an advanced form of three-dimensional(3D)printing with controllable and programmable shape transformation over time.Actuators are used as a controlling factor with multi-stage shape recovery,with emerging opportunities to customize the mechanical properties of bio-inspired structures.The print pattern of shape memory polymer(SMP)fbers strongly afects the achievable resolution,and consequently infuences several other physical and mechanical properties of fabricated actuators.However,the deformations of bio-inspired structures due to actuator layout are more complex because of the presence of the coupling of multi-directional strain.In this study,the initial structure was designed from closed-shell behavior and divided into a general unit and actuator unit,the latter responsible for driving the transformation.Mutual stress confrontation between the actuator and the general unit was considered in the layout thermodynamic model,in order to eliminate the transformation produced by the uncontrolled shape memory behavior of the general unit.Three critical and efective strategies for the layout design of actuators were proposed and then applied to achieve the desired accurate deformation of 3D-printed bilayer structures.Finally,the proposed approach was validated and adopted for fabricating a complex shell-like gripper structure.
基金the National Defense Fundamental Research Foundation of China(JCKY2017204B502,JCKY2016204A502)and National Natural Science Foundation of China(51935003).
文摘The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly affect product quality.In this paper,we review the methods of cable layout design,cable assembly process planning,and cable assembly simulation.We first review research on flexible cable layout design(both interactive and automatic).Then,research on the cable assembly process planning,including cable assembly path and manipulation planning,is reviewed.Finally,cable assembly simulation is introduced,which includes general cable information,cable collision detection data,and cable assembly process modeling.Current problems and future research directions are summarized at the end of the paper.
文摘The research study proposes to examine a three-dimensional visualization program, emphasizing on improving genetic algorithms through the optimization of a layout design-based standard and discrete shipbuilding workshop. By utilizing a steel processing workshop as an example, the principle of minimum logistic costs will be implemented to obtain an ideological equipment layout, and a mathematical model. The objectiveness is to minimize the total necessary distance traveled between machines. An improved control operator is implemented to improve the iterative efficiency of the genetic algorithm, and yield relevant parameters. The Computer Aided Tri-Dimensional Interface Application (CATIA) software is applied to establish the manufacturing resource base and parametric model of the steel processing workshop. Based on the results of optimized planar logistics, a visual parametric model of the steel processing workshop is constructed, and qualitative and quantitative adjustments then are applied to the model. The method for evaluating the results of the layout is subsequently established through the utilization of AHP. In order to provide a mode of reference to the optimization and layout of the digitalized production workshop, the optimized discrete production workshop will possess a certain level of practical significance.
文摘From the perspective of humanized design concepts, humanized space design and behavioral psychological needs of users were re-interpreted and analyzed, basic elements and design principles of cultural plaza spatial layout were proposed. Particularly, application and role of humanized design in the spatial layout of cultural plaza was analyzed, on the basis of which humanized design objective and orientation for the sustainable development of cultural plaza was defined.
基金supported by the National Natural Science Foundation of China(No.12172294,51735005,12032018).
文摘In this paper,the thin-walled structures with lattices and stiffeners manufactured by additive manufacturing are investigated.A design method based on the multi-material topology optimization is proposed for the simultaneous layout optimization of the lattices and stiffeners in thin-walled structures.First,the representative lattice units of the selected lattices are equivalent to the virtual homogeneous materials whose effective elastic matrixes are achieved by the energy-based homogenization method.Meanwhile,the stiffeners are modelled using the solid material.Subsequently,the multi-material topology optimization formulation is established for both the virtual homogeneous materials and solid material to minimize the structural compliance under mass constraint.Thus,the optimal layout of both the lattices and stiffeners could be simultaneously attained by the optimization procedure.Two applications,the aircraft panel structure and the equipment mounting plate,are dealt with to demonstrate the detailed design procedure and reveal the effect of the proposed method.According to numerical comparisons and experimental results,the thin-walled structures with lattices and stiffeners have significant advantages over the traditional stiffened thin-walled structures and lattice sandwich structures in terms of static,dynamic and anti-instability performance.
基金supported by the National Science Centre,Poland[grant number UMO-2018/31/D/HS6/02770]the Norwegian Research Council[grant number 235490].
文摘Geodashboards are often designed with explanatory elements guiding users.These elements(e.g.legends or annotations)need to be carefully designed to mitigate split attention or information integration issues.In this paper,we report expert interviews followed by a controlled experiment where we compare two interface designs with a focus on the split attention effect:(1)a multiple-legend layout with explanatory elements located next to each view,and(2)a single-legend layout with all explanatory elements gathered in one place.Different legend layouts did not affect the performance,but affected user satisfaction.75%of the participants preferred the multiple-legend layout,and rated it with a higher usability score,mainly attributing this preference to the proximity of legend elements to the view of interest.Eye tracking data strongly and clearly verifies that participants indeed make use of the proximity:With the single-legend,the majority of eye-movement transitions were between the single-legend and the closest view to the legend,whereas with multiple-legend participants have shorter and more frequent legend visits,as well as more transitions between legends and views.Taken together,the design lesson we learned from this experiment can be summarized as‘split the legend elements,but make it close to the explained elements’.
文摘In this paper we propose a COncurrent Production Engineering System (COPES) for the flexible transfer line (FTL) layout design in a restricted area. COPES first determines the buffer size in front of the bay of each machine tool in the FTL and then initializes a computer aided design (CAD) system to draw the FTL in a restricted area. We develop a set of modules systems which have been integrated into a single framework, in accordance with the practice of concurrent engineering. Concurrent engineering involves the cooperation of these activities. It's expected that the developed COPES can improve the cooperation between production engineers' and the plant designer. This can be done by enabling the production engineers' to make better decision regarding FTL buffer size.
基金The authors gratefully acknowledge the financial support from the National Science and Technology Major Project of China(Grant No.2019ZX04024001)the Natural Science Foundation of Beijing Municipality(Grant No.3192003)+2 种基金the General Project of Science and Technology Plan from Beijing Educational Committee(Grant No.KM201810005013)the Tribology Science Fund of State Key Laboratory of Tribology(Grant Nos.STLEKF16A02,SKLTKF19B08)the Training Program of Rixin Talent and Outstanding Talent from Beijing University of Technology.
文摘Green manufacturing is a growing trend,and an effective layout design method for production lines can reduce resource wastage in processing.This study focuses on existing problems such as low equipment utilization,long standby time,and low logistics efficiency in a mixed-flow parallel production line.To reduce the energy consumption,a novel method considering an independent buffer configuration and idle energy consumption analysis is proposed for this production line’s layout design.A logistics intensity model and a machine tool availability model are established to investigate the influences of independent buffer area configuration on the logistics intensity and machine tool availability.To solve the coupling problem between machine tools in such production lines,a decoupling strategy for the relationship between machine tool processing rates is explored.An energy consumption model for the machine tools,based on an optimized configuration of independent buffers,is proposed.This model can effectively reduce the idle energy consumption of the machine tools while designing the workshop layout.Subsequently,considering the problems encountered in workshop production,a comprehensive optimization model for the mixed-flow production line is developed.To verify the effectiveness of the mathematical model,it is applied to an aviation cabin production line.The results indicate that it can effectively solve the layout problem of mixed-flow parallel production lines and reduce the idle energy consumption of machine tools during production.The proposed buffer configuration and layout design method can serve as a theoretical and practical reference for the layout design of mixed-flow parallel production lines.
文摘The marketing channel of handset is always a hot point. This paper studies the influence of the website's guiding interface design on the internet marketing of handset; establishes the conceptual model about the relationships between page layout, page views and internet marketing performance; puts forward some operable suggestions for website master and handset manufacturer.
基金We are grateful to Dr. H. Hua for providing valuable references at the early stage of the research and Prof. P. Tang for her comments on the drafts of this paper. This research is funded by the National Natural Science Foundation of China (Grants 51478116 and 51538006).
文摘This paper presents a method for the automatic generation of a spatial architectural layout from a user-specified architectural program. The proposed approach binds a multi-agent topology finding system and an evolutionary optimization process. The former generates topology satisfied layouts for further optimization, while the latter focuses on refining the layouts to achieve predefined architectural criteria. The topology finding process narrows the search space and increases the performance in subsequent optimization. Results imply that the spatial layout modeling and the muLti-floor topology are handled.
基金support from the National Natural Science Foundation of China(Grant Nos.52178324,12102059)the China Postdoctoral Science Foundation(Grant No.2023M743604)+1 种基金the Beijing Natural Science Foundation(Grant No.3212027),the National Key R&D Program of China(Grant No.2023YFC3007203)the 2019 Foreign Experts Plan of Hebei Province.
文摘Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations.Optimizing perforation designs is critical for augmenting the efficacy of hydraulic fracturing and boosting oil or gas production.In this study,we employ a hybrid finite-discrete element method,known as the continuous–discontinuous element method(CDEM),to simulate the initiation of post-perforation hydraulic fractures and to derive enhanced design parameters.The model incorporates the four most prevalent perforation geometries,as delineated in an engineering technical report.Real-world perforations deviate from the ideal cylindrical shape,exhibiting variable cross-sectional profiles that typically manifest as an initial constriction followed by an expansion,a feature consistent across all four perforation types.Our simulations take into account variations in perforation hole geometries,cross-sectional diameters,and perforation lengths.The findings show that perforations generated by the 39g DP3 HMX perforating bullet yield the lowest breakdown pressure,which inversely correlates with increases in sectional diameter and perforation length.Moreover,this study reveals the relationship between breakdown pressure and fracture degree,providing valuable insights for engineers and designers to refine perforation strategies.