期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
A Comprehensive Investigation of Machine Learning Feature Extraction and ClassificationMethods for Automated Diagnosis of COVID-19 Based on X-ray Images 被引量:7
1
作者 Mazin Abed Mohammed Karrar Hameed Abdulkareem +6 位作者 Begonya Garcia-Zapirain Salama A.Mostafa Mashael S.Maashi Alaa S.Al-Waisy Mohammed Ahmed Subhi Ammar Awad Mutlag Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2021年第3期3289-3310,共22页
The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,whi... The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019. 展开更多
关键词 Coronavirus disease COVID-19 diagnosis machine learning convolutional neural networks resnet50 artificial neural network support vector machine X-ray images feature transfer learning
下载PDF
Human Gait Recognition Based on Sequential Deep Learning and Best Features Selection
2
作者 Ch Avais Hanif Muhammad Ali Mughal +3 位作者 Muhammad Attique Khan Usman Tariq Ye Jin Kim Jae-Hyuk Cha 《Computers, Materials & Continua》 SCIE EI 2023年第6期5123-5140,共18页
Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remain... Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remains a challenging task under diverse walking sequences due to the covariant factors such as normal walking and walking with wearing a coat.Researchers,over the years,have worked on successfully identifying subjects using different techniques,but there is still room for improvement in accuracy due to these covariant factors.This paper proposes an automated model-free framework for human gait recognition in this article.There are a few critical steps in the proposed method.Firstly,optical flow-based motion region esti-mation and dynamic coordinates-based cropping are performed.The second step involves training a fine-tuned pre-trained MobileNetV2 model on both original and optical flow cropped frames;the training has been conducted using static hyperparameters.The third step proposed a fusion technique known as normal distribution serially fusion.In the fourth step,a better optimization algorithm is applied to select the best features,which are then classified using a Bi-Layered neural network.Three publicly available datasets,CASIA A,CASIA B,and CASIA C,were used in the experimental process and obtained average accuracies of 99.6%,91.6%,and 95.02%,respectively.The proposed framework has achieved improved accuracy compared to the other methods. 展开更多
关键词 Human gait recognition optical flow deep learning features FUSION feature selection
下载PDF
Solving Geometry Problems via Feature Learning and Contrastive Learning of Multimodal Data 被引量:1
3
作者 Pengpeng Jian Fucheng Guo +1 位作者 Yanli Wang Yang Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1707-1728,共22页
This paper presents an end-to-end deep learning method to solve geometry problems via feature learning and contrastive learning of multimodal data.A key challenge in solving geometry problems using deep learning is to... This paper presents an end-to-end deep learning method to solve geometry problems via feature learning and contrastive learning of multimodal data.A key challenge in solving geometry problems using deep learning is to automatically adapt to the task of understanding single-modal and multimodal problems.Existing methods either focus on single-modal ormultimodal problems,and they cannot fit each other.A general geometry problem solver shouldobviouslybe able toprocess variousmodalproblems at the same time.Inthispaper,a shared feature-learning model of multimodal data is adopted to learn the unified feature representation of text and image,which can solve the heterogeneity issue between multimodal geometry problems.A contrastive learning model of multimodal data enhances the semantic relevance betweenmultimodal features and maps them into a unified semantic space,which can effectively adapt to both single-modal and multimodal downstream tasks.Based on the feature extraction and fusion of multimodal data,a proposed geometry problem solver uses relation extraction,theorem reasoning,and problem solving to present solutions in a readable way.Experimental results show the effectiveness of the method. 展开更多
关键词 Geometry problems multimodal feature learning multimodal contrastive learning automatic solver
下载PDF
Cross-Dimension Attentive Feature Fusion Network for Unsupervised Time-Series Anomaly Detection 被引量:1
4
作者 Rui Wang Yao Zhou +2 位作者 Guangchun Luo Peng Chen Dezhong Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3011-3027,共17页
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconst... Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection. 展开更多
关键词 Time series anomaly detection unsupervised feature learning feature fusion
下载PDF
Learning Noise-Assisted Robust Image Features for Fine-Grained Image Retrieval
5
作者 Vidit Kumar Hemant Petwal +1 位作者 Ajay Krishan Gairola Pareshwar Prasad Barmola 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2711-2724,共14页
Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image.The key objective is to learn discriminative fin... Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image.The key objective is to learn discriminative fine-grained features by training deep models such that similar images are clustered,and dissimilar images are separated in the low embedding space.Previous works primarily focused on defining local structure loss functions like triplet loss,pairwise loss,etc.However,training via these approaches takes a long training time,and they have poor accuracy.Additionally,representations learned through it tend to tighten up in the embedded space and lose generalizability to unseen classes.This paper proposes a noise-assisted representation learning method for fine-grained image retrieval to mitigate these issues.In the proposed work,class manifold learning is performed in which positive pairs are created with noise insertion operation instead of tightening class clusters.And other instances are treated as negatives within the same cluster.Then a loss function is defined to penalize when the distance between instances of the same class becomes too small relative to the noise pair in that class in embedded space.The proposed approach is validated on CARS-196 and CUB-200 datasets and achieved better retrieval results(85.38%recall@1 for CARS-196%and 70.13%recall@1 for CUB-200)compared to other existing methods. 展开更多
关键词 Convolutional network zero-shot learning fine-grained image retrieval image representation image retrieval intra-class diversity feature learning
下载PDF
Enhanced Deep Autoencoder Based Feature Representation Learning for Intelligent Intrusion Detection System 被引量:2
6
作者 Thavavel Vaiyapuri Adel Binbusayyis 《Computers, Materials & Continua》 SCIE EI 2021年第9期3271-3288,共18页
In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owin... In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owing to the lack of accurately labeled network traffic data,many unsupervised feature representation learning models have been proposed with state-of-theart performance.Yet,these models fail to consider the classification error while learning the feature representation.Intuitively,the learnt feature representation may degrade the performance of the classification task.For the first time in the field of intrusion detection,this paper proposes an unsupervised IDS model leveraging the benefits of deep autoencoder(DAE)for learning the robust feature representation and one-class support vector machine(OCSVM)for finding the more compact decision hyperplane for intrusion detection.Specially,the proposed model defines a new unified objective function to minimize the reconstruction and classification error simultaneously.This unique contribution not only enables the model to support joint learning for feature representation and classifier training but also guides to learn the robust feature representation which can improve the discrimination ability of the classifier for intrusion detection.Three set of evaluation experiments are conducted to demonstrate the potential of the proposed model.First,the ablation evaluation on benchmark dataset,NSL-KDD validates the design decision of the proposed model.Next,the performance evaluation on recent intrusion dataset,UNSW-NB15 signifies the stable performance of the proposed model.Finally,the comparative evaluation verifies the efficacy of the proposed model against recently published state-of-the-art methods. 展开更多
关键词 CYBERSECURITY network intrusion detection deep learning autoencoder stacked autoencoder feature representational learning joint learning one-class classifier OCSVM
下载PDF
Review of Anomaly Detection Systems in Industrial Control Systems Using Deep Feature Learning Approach 被引量:1
7
作者 Raogo Kabore Adlès Kouassi +3 位作者 Rodrigue N’goran Olivier Asseu Yvon Kermarrec Philippe Lenca 《Engineering(科研)》 2021年第1期30-44,共15页
Industrial Control Systems (ICS) or SCADA networks are increasingly targeted by cyber-attacks as their architectures shifted from proprietary hardware, software and protocols to standard and open sources ones. Further... Industrial Control Systems (ICS) or SCADA networks are increasingly targeted by cyber-attacks as their architectures shifted from proprietary hardware, software and protocols to standard and open sources ones. Furthermore, these systems which used to be isolated are now interconnected to corporate networks and to the Internet. Among the countermeasures to mitigate the threats, anomaly detection systems play an important role as they can help detect even unknown attacks. Deep learning which has gained a great attention in the last few years due to excellent results in image, video and natural language processing is being used for anomaly detection in information security, particularly in SCADA networks. The salient features of the data from SCADA networks are learnt as hierarchical representation using deep architectures, and those learnt features are used to classify the data into normal or anomalous ones. This article is a review of various architectures such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Stacked Autoencoder (SAE), Long Short Term Memory (LSTM), or a combination of those architectures, for anomaly detection purpose in SCADA networks. 展开更多
关键词 ICS SCADA Unsupervised feature learning Deep learning Anomaly Detection
下载PDF
Augmented Deep Multi-Granularity Pose-Aware Feature Fusion Network for Visible-Infrared Person Re-Identification 被引量:2
8
作者 Zheng Shi Wanru Song +1 位作者 Junhao Shan Feng Liu 《Computers, Materials & Continua》 SCIE EI 2023年第12期3467-3488,共22页
Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared ima... Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared images for video surveillance,which poses a challenge in exploring cross-modal shared information accurately and efficiently.Therefore,multi-granularity feature learning methods have been applied in VI-ReID to extract potential multi-granularity semantic information related to pedestrian body structure attributes.However,existing research mainly uses traditional dual-stream fusion networks and overlooks the core of cross-modal learning networks,the fusion module.This paper introduces a novel network called the Augmented Deep Multi-Granularity Pose-Aware Feature Fusion Network(ADMPFF-Net),incorporating the Multi-Granularity Pose-Aware Feature Fusion(MPFF)module to generate discriminative representations.MPFF efficiently explores and learns global and local features with multi-level semantic information by inserting disentangling and duplicating blocks into the fusion module of the backbone network.ADMPFF-Net also provides a new perspective for designing multi-granularity learning networks.By incorporating the multi-granularity feature disentanglement(mGFD)and posture information segmentation(pIS)strategies,it extracts more representative features concerning body structure information.The Local Information Enhancement(LIE)module augments high-performance features in VI-ReID,and the multi-granularity joint loss supervises model training for objective feature learning.Experimental results on two public datasets show that ADMPFF-Net efficiently constructs pedestrian feature representations and enhances the accuracy of VI-ReID. 展开更多
关键词 Visible-infrared person re-identification MULTI-GRANULARITY feature learning modality
下载PDF
Nonlinear industrial process fault diagnosis with latent label consistency and sparse Gaussian feature learning
9
作者 LI Xian-ling ZHANG Jian-feng +2 位作者 ZHAO Chun-hui DING Jin-liang SUN You-xian 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期3956-3973,共18页
With the increasing complexity of industrial processes, the high-dimensional industrial data exhibit a strong nonlinearity, bringing considerable challenges to the fault diagnosis of industrial processes. To efficient... With the increasing complexity of industrial processes, the high-dimensional industrial data exhibit a strong nonlinearity, bringing considerable challenges to the fault diagnosis of industrial processes. To efficiently extract deep meaningful features that are crucial for fault diagnosis, a sparse Gaussian feature extractor(SGFE) is designed to learn a nonlinear mapping that projects the raw data into the feature space with the fault label dimension. The feature space is described by the one-hot encoding of the fault category label as an orthogonal basis. In this way, the deep sparse Gaussian features related to fault categories can be gradually learned from the raw data by SGFE. In the feature space,the sparse Gaussian(SG) loss function is designed to constrain the distribution of features to multiple sparse multivariate Gaussian distributions. The sparse Gaussian features are linearly separable in the feature space, which is conducive to improving the accuracy of the downstream fault classification task. The feasibility and practical utility of the proposed SGFE are verified by the handwritten digits MNIST benchmark and Tennessee-Eastman(TE) benchmark process,respectively. 展开更多
关键词 nonlinear fault diagnosis multiple multivariate Gaussian distributions sparse Gaussian feature learning Gaussian feature extractor
下载PDF
Assessment of glaucoma using extreme learning machine and fractal feature analysis
10
作者 Subramaniam Kavitha Karuppusamy Duraiswamy Sakthivel Karthikeyan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2015年第6期1255-1257,共3页
Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(... Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(ELM)and fractal feature analysis.Glaucoma is the second most frequent cause of permanent blindness in industrial 展开更多
关键词 In Assessment of glaucoma using extreme learning machine and fractal feature analysis ELM FIGURE
原文传递
Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks
11
作者 Jinxi Guo Kai Chen +5 位作者 Jiehui Liu Yuhao Ma Jie Wu Yaochun Wu Xiaofeng Xue Jianshen Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2619-2640,共22页
Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received in... Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels. 展开更多
关键词 Fault diagnosis transfer learning domain adaptation discriminative feature learning correlation alignment
下载PDF
Proposal of Equivalent Porosity Indicator for Foam Aluminum Based on GRNN
12
作者 Wenhao Da Lucai Wang +3 位作者 Yanli Wang Xiaohong You Wenzhan Huang Fang Wang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期16-31,共16页
To gain a more comprehensive understanding and evaluate foam aluminum's performance,researchers have introduced various characterization indicators.However,the current understanding of the significance of these in... To gain a more comprehensive understanding and evaluate foam aluminum's performance,researchers have introduced various characterization indicators.However,the current understanding of the significance of these indicators in analyzing foam aluminum's performance is limited.This study employs the Generalized Regression Neural Network(GRNN)method to establish a model that links foam aluminum's microstructure characterization data with its mechanical properties.Through the GRNN model,researchers extracted four of the most crucial features and their corresponding weight values from the 13 pore characteristics of foam aluminum.Subsequently,a new characterization formula,called“Wang equivalent porosity”(WEP),was developed by using residual weights assigned to the feature weights,and four parameter coefficients were obtained.This formula aims to represent the relationship between foam aluminum's microstructural features and its mechanical performance.Furthermore,the researchers conducted model verification using compression data from 11 sets of foam aluminum.The validation results showed that among these 11 foam aluminum datasets,the Gibson-Ashby formula yielded anomalous results in two cases,whereas WEP exhibited exceptional stability without any anomalies.In comparison to the Gibson-Ashby formula,WEP demonstrated an 18.18%improvement in evaluation accuracy. 展开更多
关键词 aluminum foam characterization index importance analysis feature learning
下载PDF
Intelligent Fault Diagnosis of Rotary Machinery Based on Unsupervised Multiscale Representation Learning 被引量:6
13
作者 Guo-Qian Jiang Ping Xie +2 位作者 Xiao Wang Meng Chen Qun He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1314-1324,共11页
The performance of traditional vibration based fault diagnosis methods greatly depends on those hand- crafted features extracted using signal processing algo- rithms, which require significant amounts of domain knowle... The performance of traditional vibration based fault diagnosis methods greatly depends on those hand- crafted features extracted using signal processing algo- rithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised represen- tation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal struc- tures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at dif- ferent scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multi- scale representations. Finally, the multiscale representa- tions are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches. 展开更多
关键词 Intelligent fault diagnosis Vibration signals Unsupervised feature learning Sparse filtering Multiscalefeature extraction
下载PDF
Robust multi-layer extreme learning machine using bias-variance tradeoff 被引量:1
14
作者 YU Tian-jun YAN Xue-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3744-3753,共10页
As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large... As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise. 展开更多
关键词 extreme learning machine deep neural network ROBUSTNESS unsupervised feature learning
下载PDF
A Progressive Approach to Generic Object Detection: A Two-Stage Framework for Image Recognition
15
作者 Muhammad Aamir Ziaur Rahman +3 位作者 Waheed Ahmed Abro Uzair Aslam Bhatti Zaheer Ahmed Dayo Muhammad Ishfaq 《Computers, Materials & Continua》 SCIE EI 2023年第6期6351-6373,共23页
Object detection in images has been identified as a critical area of research in computer vision image processing.Research has developed several novel methods for determining an object’s location and category from an... Object detection in images has been identified as a critical area of research in computer vision image processing.Research has developed several novel methods for determining an object’s location and category from an image.However,there is still room for improvement in terms of detection effi-ciency.This study aims to develop a technique for detecting objects in images.To enhance overall detection performance,we considered object detection a two-fold problem,including localization and classification.The proposed method generates class-independent,high-quality,and precise proposals using an agglomerative clustering technique.We then combine these proposals with the relevant input image to train our network on convolutional features.Next,a network refinement module decreases the quantity of generated proposals to produce fewer high-quality candidate proposals.Finally,revised candidate proposals are sent into the network’s detection process to determine the object type.The algorithm’s performance is evaluated using publicly available the PASCAL Visual Object Classes Challenge 2007(VOC2007),VOC2012,and Microsoft Common Objects in Context(MS-COCO)datasets.Using only 100 proposals per image at intersection over union((IoU)=0.5 and 0.7),the proposed method attains Detection Recall(DR)rates of(93.17%and 79.35%)and(69.4%and 58.35%),and Mean Average Best Overlap(MABO)values of(79.25%and 62.65%),for the VOC2007 and MS-COCO datasets,respectively.Besides,it achieves a Mean Average Precision(mAP)of(84.7%and 81.5%)on both VOC datasets.The experiment findings reveal that our method exceeds previous approaches in terms of overall detection performance,proving its effectiveness. 展开更多
关键词 Deep neural network deep learning features agglomerative clustering LOCALIZATIONS REFINEMENT region of interest(ROI) object detection
下载PDF
Dual-stream coupling network with wavelet transform for cross-resolution person re-identification
16
作者 SUN Rui YANG Zi +1 位作者 ZHAO Zhenghui ZHANG Xudong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期682-695,共14页
Person re-identification is a prevalent technology deployed on intelligent surveillance.There have been remarkable achievements in person re-identification methods based on the assumption that all person images have a... Person re-identification is a prevalent technology deployed on intelligent surveillance.There have been remarkable achievements in person re-identification methods based on the assumption that all person images have a sufficiently high resolution,yet such models are not applicable to the open world.In real world,the changing distance between pedestrians and the camera renders the resolution of pedestrians captured by the camera inconsistent.When low-resolution(LR)images in the query set are matched with high-resolution(HR)images in the gallery set,it degrades the performance of the pedestrian matching task due to the absent pedestrian critical information in LR images.To address the above issues,we present a dualstream coupling network with wavelet transform(DSCWT)for the cross-resolution person re-identification task.Firstly,we use the multi-resolution analysis principle of wavelet transform to separately process the low-frequency and high-frequency regions of LR images,which is applied to restore the lost detail information of LR images.Then,we devise a residual knowledge constrained loss function that transfers knowledge between the two streams of LR images and HR images for accessing pedestrian invariant features at various resolutions.Extensive qualitative and quantitative experiments across four benchmark datasets verify the superiority of the proposed approach. 展开更多
关键词 cross-resolution feature invariant learning person re-identification residual knowledge transfer wavelet transform
下载PDF
Two-level hierarchical feature learning for image classification 被引量:3
17
作者 Guang-hui SONG Xiao-gang JIN +1 位作者 Gen-lang CHEN Yan NIE 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第9期897-906,共10页
In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific... In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific features are required so that the classifier can improve the classification performance. In this paper, we propose a novel two-level hierarchical feature learning framework based on the deep convolutional neural network(CNN), which is simple and effective. First, the deep feature extractors of different levels are trained using the transfer learning method that fine-tunes the pre-trained deep CNN model toward the new target dataset. Second, the general feature extracted from all the categories and the specific feature extracted from highly similar categories are fused into a feature vector. Then the final feature representation is fed into a linear classifier. Finally, experiments using the Caltech-256, Oxford Flower-102, and Tasmania Coral Point Count(CPC) datasets demonstrate that the expression ability of the deep features resulting from two-level hierarchical feature learning is powerful. Our proposed method effectively increases the classification accuracy in comparison with flat multiple classification methods. 展开更多
关键词 Transfer learning feature learning Deep convolutional neural network Hierarchical classification Spectral clustering
原文传递
Feature Selection and Feature Learning for High-dimensional Batch Reinforcement Learning: A Survey 被引量:2
18
作者 De-Rong Liu Hong-Liang Li Ding Wang 《International Journal of Automation and computing》 EI CSCD 2015年第3期229-242,共14页
Tremendous amount of data are being generated and saved in many complex engineering and social systems every day.It is significant and feasible to utilize the big data to make better decisions by machine learning tech... Tremendous amount of data are being generated and saved in many complex engineering and social systems every day.It is significant and feasible to utilize the big data to make better decisions by machine learning techniques. In this paper, we focus on batch reinforcement learning(RL) algorithms for discounted Markov decision processes(MDPs) with large discrete or continuous state spaces, aiming to learn the best possible policy given a fixed amount of training data. The batch RL algorithms with handcrafted feature representations work well for low-dimensional MDPs. However, for many real-world RL tasks which often involve high-dimensional state spaces, it is difficult and even infeasible to use feature engineering methods to design features for value function approximation. To cope with high-dimensional RL problems, the desire to obtain data-driven features has led to a lot of works in incorporating feature selection and feature learning into traditional batch RL algorithms. In this paper, we provide a comprehensive survey on automatic feature selection and unsupervised feature learning for high-dimensional batch RL. Moreover, we present recent theoretical developments on applying statistical learning to establish finite-sample error bounds for batch RL algorithms based on weighted Lpnorms. Finally, we derive some future directions in the research of RL algorithms, theories and applications. 展开更多
关键词 Intelligent control reinforcement learning adaptive dynamic programming feature selection feature learning big data.
原文传递
Speech emotion recognition with unsupervised feature learning 被引量:1
19
作者 Zheng-wei HUANG Wen-tao XUE Qi-rong MAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第5期358-366,共9页
Emotion-based features are critical for achieving high performance in a speech emotion recognition(SER) system. In general, it is difficult to develop these features due to the ambiguity of the ground-truth. In this p... Emotion-based features are critical for achieving high performance in a speech emotion recognition(SER) system. In general, it is difficult to develop these features due to the ambiguity of the ground-truth. In this paper, we apply several unsupervised feature learning algorithms(including K-means clustering, the sparse auto-encoder, and sparse restricted Boltzmann machines), which have promise for learning task-related features by using unlabeled data, to speech emotion recognition. We then evaluate the performance of the proposed approach and present a detailed analysis of the effect of two important factors in the model setup, the content window size and the number of hidden layer nodes. Experimental results show that larger content windows and more hidden nodes contribute to higher performance. We also show that the two-layer network cannot explicitly improve performance compared to a single-layer network. 展开更多
关键词 Speech emotion recognition Unsupervised feature learning Neural network Affect computing
原文传递
Fatigue driving detection based on Haar feature and extreme learning machine 被引量:5
20
作者 Chang Zheng Ban Xiaojuan Wang Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2016年第4期91-100,共10页
As the significant branch of intelligent vehicle networking technology, the intelligent fatigue driving detection technology has been introduced into the paper in order to recognize the fatigue state of the vehicle dr... As the significant branch of intelligent vehicle networking technology, the intelligent fatigue driving detection technology has been introduced into the paper in order to recognize the fatigue state of the vehicle driver and avoid the traffic accident. The disadvantages of the traditional fatigue driving detection method have been pointed out when we study on the traditional eye tracking technology and traditional artificial neural networks. On the basis of the image topological analysis technology, Haar like features and extreme learning machine algorithm, a new detection method of the intelligent fatigue driving has been proposed in the paper. Besides, the detailed algorithm and realization scheme of the intelligent fatigue driving detection have been put forward as well. Finally, by comparing the results of the simulation experiments, the new method has been verified to have a better robustness, efficiency and accuracy in monitoring and tracking the drivers' fatigue driving by using the human eye tracking technology. 展开更多
关键词 Haar feature extreme learning machine fatigue driving detection
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部