Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generator...Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.展开更多
Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-d...Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.展开更多
多柔体系统动力学主要研究由多个具有运动学约束、存在大范围相对运动的柔性部件构成的动力学系统的建模、计算和控制.多柔体系统不仅具有柔体大变形导致的几何非线性,更具有大范围刚体运动引起的几何非线性,其非线性程度远高于计算结...多柔体系统动力学主要研究由多个具有运动学约束、存在大范围相对运动的柔性部件构成的动力学系统的建模、计算和控制.多柔体系统不仅具有柔体大变形导致的几何非线性,更具有大范围刚体运动引起的几何非线性,其非线性程度远高于计算结构力学所研究的几何非线性问题.本文基于李群局部标架(local frame of Lie group,LFLG),讨论如何发展一套新的多柔体系统动力学建模和计算方法体系,具体内容包括:基于局部标架的梁、板壳单元,适用于长时间历程计算的多柔体系统碰撞动力学积分算法,结合区域分解技术的大规模多柔体系统动力学并行求解器,以及若干验证性算例.上述基于李群局部标架的方法体系可在计算中消除刚体运动带来的几何非线性问题,使柔体系统的广义惯性力、广义弹性力及其雅可比矩阵满足刚体运动的不变性,使多柔体系统动力学与大变形结构力学相互统一,有望推动新一代多柔体系统动力学建模和计算软件的发展.展开更多
文摘Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004zx16 tCorresponding author, E-maih zzlh100@163.com
文摘Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.
文摘多柔体系统动力学主要研究由多个具有运动学约束、存在大范围相对运动的柔性部件构成的动力学系统的建模、计算和控制.多柔体系统不仅具有柔体大变形导致的几何非线性,更具有大范围刚体运动引起的几何非线性,其非线性程度远高于计算结构力学所研究的几何非线性问题.本文基于李群局部标架(local frame of Lie group,LFLG),讨论如何发展一套新的多柔体系统动力学建模和计算方法体系,具体内容包括:基于局部标架的梁、板壳单元,适用于长时间历程计算的多柔体系统碰撞动力学积分算法,结合区域分解技术的大规模多柔体系统动力学并行求解器,以及若干验证性算例.上述基于李群局部标架的方法体系可在计算中消除刚体运动带来的几何非线性问题,使柔体系统的广义惯性力、广义弹性力及其雅可比矩阵满足刚体运动的不变性,使多柔体系统动力学与大变形结构力学相互统一,有望推动新一代多柔体系统动力学建模和计算软件的发展.