Computational prediction of stall aerodynamics in free air and in close proximity to the ground considering the 30P30N three-element high-lift configuration is carried out based on CFD simulations using the OpenFOAM c...Computational prediction of stall aerodynamics in free air and in close proximity to the ground considering the 30P30N three-element high-lift configuration is carried out based on CFD simulations using the OpenFOAM code and Fluent software. Both the attached and separated flow regimes are simulated using the Reynolds Averaged Navier-Stokes (RANS) equations closed with the Spalart-Allamaras (SA) turbulence model for static conditions and pitch oscillations at Reynolds number, <em>Re</em> = 5 x 10<sup>6</sup> and Mach number, <em>M</em> = 0.2. The effects of closeness to the ground and dynamic stall are investigated and the reduction in the lift force in close proximity to the ground is discussed.展开更多
The aerodynamic force and flow structure of NACA 0012 airfoil performing an unsteady motion at low Reynolds number (Re = 100) are calculated by solving Navier-Stokes equations. The motion consists of three parts: the ...The aerodynamic force and flow structure of NACA 0012 airfoil performing an unsteady motion at low Reynolds number (Re = 100) are calculated by solving Navier-Stokes equations. The motion consists of three parts: the first translation, rotation and the second translation in the direction opposite to the first. The rotation and the second translation in this motion are expected to represent the rotation and translation of the wing-section of a hovering insect. The flow structure is used in combination with the theory of vorticity dynamics to explain the generation of unsteady aerodynamic force in the motion. During the rotation, due to the creation of strong vortices in short time, large aerodynamic force is produced and the force is almost normal to the airfoil chord. During the second translation, large lift coefficient can be maintained for certain time period and (C) over bar (L), the lift coefficient averaged over four chord lengths of travel, is larger than 2 (the corresponding steady-state lift coefficient is only 0.9). The large lift coefficient is due to two effects. The first is the delayed shedding of the stall vortex. The second is that the vortices created during the airfoil rotation and in the near wake left by previous translation form a short 'vortex street' in front of the airfoil and the 'vortex street' induces a 'wind'; against this 'wind' the airfoil translates, increasing its relative speed. The above results provide insights to the understanding of the mechanism of high-lift generation by a hovering insect.展开更多
A two-dimensional steady Reynolds-averaged Navier-Stokes (RANS) equation was solved to investigate the effects of a Gurney flap on SFYT15 thick airfoil aerodynamic performance. This airfoil was designed for flight v...A two-dimensional steady Reynolds-averaged Navier-Stokes (RANS) equation was solved to investigate the effects of a Gurney flap on SFYT15 thick airfoil aerodynamic performance. This airfoil was designed for flight vehicle operating at 20 km altitude with freestream velocity of 25 m/s, The chord length (C) is 5 m and the Reynolds number based on chord length is Re = 7.76 × 10^5. Gurney flaps with the heights ranging from 0.25%C to 3%C were investigated. The shear stress transport (SST) k-ω turbulence model was used to simulate the flow structure around the airfoil. It is showed that Gurney flap can enhance not only the prestall lift but also lift-to-drag ratio in a certain range of angles of attack. Specially, at cruise angle of attack (ω = 3°), Gurney flap with 0.5%C height can increase lift-to-drag ratio by 2.7%, and lift coefficient by 12.9%, respectively. Furthermore, the surface pressure distribution, streamlines and trailing-edge flow structure around the airfoil are illustrated, which are helpful to understand the mechanisms of Gurney flap on airfoil aerodynamic performance. Moreover, it is found that the increase of airfoil drag with Gurney flap can be attributed to the increase of pressure drag between the windward and the leeward sides of Gurney flat itself.展开更多
The effect of the turbulence intensity of the oncoming stream on the aerodynamic characteristics of the NACA-0012 airfoil is investigated by a direct numerical simulation. The numerical results are found to be consist...The effect of the turbulence intensity of the oncoming stream on the aerodynamic characteristics of the NACA-0012 airfoil is investigated by a direct numerical simulation. The numerical results are found to be consistent with the experimental measurements. Based on the finite spectral QUICK scheme, the simulation gets the high accuracy results. Both the simulation and the experiment reveal that the airfoil stall does not exist for the low turbulence intensity, however, occurs when the turbulence intensity increases sufficiently. Besides, the turbulence intensity has a significant effect on both the airfoil boundary layer and the separated shear layer.展开更多
With the invention of the aircraft, it has become much faster and larger than the original Wright Brothers aircraft. When the speed is high enough to cross the speed of sound, air conditions will be different than tha...With the invention of the aircraft, it has become much faster and larger than the original Wright Brothers aircraft. When the speed is high enough to cross the speed of sound, air conditions will be different than that in low speed due to the existence of shock wave. In this work, we introduce several numerical ways to analyze the performance of the airfoil when the speed is higher than the speed of sound. With these numerical methods, we analyzed the performance of diamond-shaped airfoil under different angles of attack and speed. With this data, engineers can choose a better airfoil to attain a lower drag coefficient as well as lift coefficient when designing a high-speed aircraft.展开更多
文摘Computational prediction of stall aerodynamics in free air and in close proximity to the ground considering the 30P30N three-element high-lift configuration is carried out based on CFD simulations using the OpenFOAM code and Fluent software. Both the attached and separated flow regimes are simulated using the Reynolds Averaged Navier-Stokes (RANS) equations closed with the Spalart-Allamaras (SA) turbulence model for static conditions and pitch oscillations at Reynolds number, <em>Re</em> = 5 x 10<sup>6</sup> and Mach number, <em>M</em> = 0.2. The effects of closeness to the ground and dynamic stall are investigated and the reduction in the lift force in close proximity to the ground is discussed.
基金The project supported by the National Natural Science Foundation of China (19725210)
文摘The aerodynamic force and flow structure of NACA 0012 airfoil performing an unsteady motion at low Reynolds number (Re = 100) are calculated by solving Navier-Stokes equations. The motion consists of three parts: the first translation, rotation and the second translation in the direction opposite to the first. The rotation and the second translation in this motion are expected to represent the rotation and translation of the wing-section of a hovering insect. The flow structure is used in combination with the theory of vorticity dynamics to explain the generation of unsteady aerodynamic force in the motion. During the rotation, due to the creation of strong vortices in short time, large aerodynamic force is produced and the force is almost normal to the airfoil chord. During the second translation, large lift coefficient can be maintained for certain time period and (C) over bar (L), the lift coefficient averaged over four chord lengths of travel, is larger than 2 (the corresponding steady-state lift coefficient is only 0.9). The large lift coefficient is due to two effects. The first is the delayed shedding of the stall vortex. The second is that the vortices created during the airfoil rotation and in the near wake left by previous translation form a short 'vortex street' in front of the airfoil and the 'vortex street' induces a 'wind'; against this 'wind' the airfoil translates, increasing its relative speed. The above results provide insights to the understanding of the mechanism of high-lift generation by a hovering insect.
文摘A two-dimensional steady Reynolds-averaged Navier-Stokes (RANS) equation was solved to investigate the effects of a Gurney flap on SFYT15 thick airfoil aerodynamic performance. This airfoil was designed for flight vehicle operating at 20 km altitude with freestream velocity of 25 m/s, The chord length (C) is 5 m and the Reynolds number based on chord length is Re = 7.76 × 10^5. Gurney flaps with the heights ranging from 0.25%C to 3%C were investigated. The shear stress transport (SST) k-ω turbulence model was used to simulate the flow structure around the airfoil. It is showed that Gurney flap can enhance not only the prestall lift but also lift-to-drag ratio in a certain range of angles of attack. Specially, at cruise angle of attack (ω = 3°), Gurney flap with 0.5%C height can increase lift-to-drag ratio by 2.7%, and lift coefficient by 12.9%, respectively. Furthermore, the surface pressure distribution, streamlines and trailing-edge flow structure around the airfoil are illustrated, which are helpful to understand the mechanisms of Gurney flap on airfoil aerodynamic performance. Moreover, it is found that the increase of airfoil drag with Gurney flap can be attributed to the increase of pressure drag between the windward and the leeward sides of Gurney flat itself.
基金Project supported by the National Natural Science Foundation of China(No.108720006)the National Basic Research Program of China(973 Program)(No.2007CB714601)
文摘The effect of the turbulence intensity of the oncoming stream on the aerodynamic characteristics of the NACA-0012 airfoil is investigated by a direct numerical simulation. The numerical results are found to be consistent with the experimental measurements. Based on the finite spectral QUICK scheme, the simulation gets the high accuracy results. Both the simulation and the experiment reveal that the airfoil stall does not exist for the low turbulence intensity, however, occurs when the turbulence intensity increases sufficiently. Besides, the turbulence intensity has a significant effect on both the airfoil boundary layer and the separated shear layer.
文摘With the invention of the aircraft, it has become much faster and larger than the original Wright Brothers aircraft. When the speed is high enough to cross the speed of sound, air conditions will be different than that in low speed due to the existence of shock wave. In this work, we introduce several numerical ways to analyze the performance of the airfoil when the speed is higher than the speed of sound. With these numerical methods, we analyzed the performance of diamond-shaped airfoil under different angles of attack and speed. With this data, engineers can choose a better airfoil to attain a lower drag coefficient as well as lift coefficient when designing a high-speed aircraft.