期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Reliability Analysis of Wind Turbine Gearbox Based on the Optimal Confidence Limit Method
1
作者 安宗文 许洁 张小玲 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期839-842,共4页
Based on the zero-failure data of 30 Chinese 1. 5 MW wind turbine gearboxes( WTGs),the optimal confidence limit method was developed to predict the reliability and reliability lifetime of WTG. Firstly,Bayesian method ... Based on the zero-failure data of 30 Chinese 1. 5 MW wind turbine gearboxes( WTGs),the optimal confidence limit method was developed to predict the reliability and reliability lifetime of WTG. Firstly,Bayesian method and classical probability estimation method were introduced to estimate the value interval of shape parameter considering the engineering practice. Secondly,taking this value interval into the optimal confidence limit method,the reliability and reliability lifetime of WTG could be obtained under different confidence levels. Finally,the results of optimal confidence limit method and Bayesian method were compared. And the comparison results show that the rationality of this estimated range.Meantime, the rule of confidence level selection in the optimal confidence limit method is provided, and the reliability and reliability lifetime prediction of WTG can be acquired. 展开更多
关键词 wind turbine gearbox(WTG) the optimal confidence limit method confidence level zero-failure data RELIABILITY
下载PDF
Analyzing the Effect of the Intra-Pixel Position of Small PSFs for Optimizing the PL of Optical Subpixel Localization
2
作者 Haiyang Zhan Fei Xing +4 位作者 Jingyu Bao Ting Sun Zhenzhen Chen Zheng You Li Yuan 《Engineering》 SCIE EI CAS CSCD 2023年第8期140-149,共10页
Subpixel localization techniques for estimating the positions of point-like images captured by pixelated image sensors have been widely used in diverse optical measurement fields.With unavoidable imaging noise,there i... Subpixel localization techniques for estimating the positions of point-like images captured by pixelated image sensors have been widely used in diverse optical measurement fields.With unavoidable imaging noise,there is a precision limit(PL)when estimating the target positions on image sensors,which depends on the detected photon count,noise,point spread function(PSF)radius,and PSF’s intra-pixel position.Previous studies have clearly reported the effects of the first three parameters on the PL but have neglected the intra-pixel position information.Here,we develop a localization PL analysis framework for revealing the effect of the intra-pixel position of small PSFs.To accurately estimate the PL in practical applications,we provide effective PSF(e PSF)modeling approaches and apply the Cramér–Rao lower bound.Based on the characteristics of small PSFs,we first derive simplified equations for finding the best PL and the best intra-pixel region for an arbitrary small PSF;we then verify these equations on real PSFs.Next,we use the typical Gaussian PSF to perform a further analysis and find that the final optimum of the PL is achieved at the pixel boundaries when the Gaussian radius is as small as possible,indicating that the optimum is ultimately limited by light diffraction.Finally,we apply the maximum likelihood method.Its combination with e PSF modeling allows us to successfully reach the PL in experiments,making the above theoretical analysis effective.This work provides a new perspective on combining image sensor position control with PSF engineering to make full use of information theory,thereby paving the way for thoroughly understanding and achieving the final optimum of the PL in optical localization. 展开更多
关键词 Optical measurement Subpixel localization Precision limit optimization Small point spread functions Centroiding Star sensors
下载PDF
Optimal Configuration of Dispersion Compensation Modules with Installation Limits
3
作者 Malin Premaratne Prashan Premaratne 《光学学报》 EI CAS CSCD 北大核心 2003年第S1期577-578,共2页
Selecting a cost optimum subset of discrete-value dispersion compensation modules (DV-DCMs) subject to maximum module count from an available set of DV-DCMs is a NP-hard problem. We derive a novel dynamic programming ... Selecting a cost optimum subset of discrete-value dispersion compensation modules (DV-DCMs) subject to maximum module count from an available set of DV-DCMs is a NP-hard problem. We derive a novel dynamic programming algorithm with pseudo-polynomial time bound and show that DV-DCM cost re-scaling can improve the running time. 展开更多
关键词 of on in BE for Optimal Configuration of Dispersion Compensation Modules with Installation limits that DCM with
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部