对锂离子电池的健康状态SOH(state of health)进行准确估计是锂离子电池安全稳定运行的重要保障,提出了一种基于容量增量分析ICA(incremental capacity analysis)和Box-Cox变换的锂离子电池SOH估计方法。首先,将电池恒流充电过程的IC曲...对锂离子电池的健康状态SOH(state of health)进行准确估计是锂离子电池安全稳定运行的重要保障,提出了一种基于容量增量分析ICA(incremental capacity analysis)和Box-Cox变换的锂离子电池SOH估计方法。首先,将电池恒流充电过程的IC曲线峰值高度ICP(peak of incremental capacity curve)作为健康特征HF(health factor),数学推导出ICP与健康状态的强相关性。结合卡尔曼滤波算法提取光滑的容量增量曲线。将电池容量衰退过程的前部分周期作为训练周期,通过Box-Cox变换将训练周期的ICP和SOH序列变换成线性关系,然后通过线性拟合来实现剩余周期的SOH估计。在Oxford和NASA数据集上进行实验验证,并与机器学习算法进行对比,结果表明所提方法具有较高的估计精度、较短的计算时间和较强的鲁棒性。展开更多
文摘对锂离子电池的健康状态SOH(state of health)进行准确估计是锂离子电池安全稳定运行的重要保障,提出了一种基于容量增量分析ICA(incremental capacity analysis)和Box-Cox变换的锂离子电池SOH估计方法。首先,将电池恒流充电过程的IC曲线峰值高度ICP(peak of incremental capacity curve)作为健康特征HF(health factor),数学推导出ICP与健康状态的强相关性。结合卡尔曼滤波算法提取光滑的容量增量曲线。将电池容量衰退过程的前部分周期作为训练周期,通过Box-Cox变换将训练周期的ICP和SOH序列变换成线性关系,然后通过线性拟合来实现剩余周期的SOH估计。在Oxford和NASA数据集上进行实验验证,并与机器学习算法进行对比,结果表明所提方法具有较高的估计精度、较短的计算时间和较强的鲁棒性。