We consider plus-operators in Krein spaces and generated operator linear fractional relations of the following form: . We study some special type of factorization for plus-operators T, among them the following one: T ...We consider plus-operators in Krein spaces and generated operator linear fractional relations of the following form: . We study some special type of factorization for plus-operators T, among them the following one: T = BU, where B is a lower triangular plus-operator, U is a J-unitary operator. We apply the above factorization to the study of basical properties of relations (1), in particular, convexity and compactness of their images with respect to the weak operator topology. Obtained results we apply to the known Koenigs embedding problem, the Krein-Phillips problem of existing of invariant semidefinite subspaces for some families of plus-operators and to some other fields.展开更多
In this article, we introduce the concept of demicompactness with respect to a closed densely defined linear operator, as a generalization of the class of demicompact operator introduced by Petryshyn in [24] and we es...In this article, we introduce the concept of demicompactness with respect to a closed densely defined linear operator, as a generalization of the class of demicompact operator introduced by Petryshyn in [24] and we establish some new results in Fredholm theory. Moreover, we apply the obtained results to discuss the incidence of some perturbation results on the behavior of relative essential spectra of unbounded linear operators acting on Banach spaces. We conclude by characterizations of the relative Schechter's and approximate essential spectrum.展开更多
In this paper a generalized version of the classical Hardy-Littlewood-Polya inequality is given.Furthermore,the Stechkin's problem for a linear differential operator is solved in L_2(R), and the optimal recovery p...In this paper a generalized version of the classical Hardy-Littlewood-Polya inequality is given.Furthermore,the Stechkin's problem for a linear differential operator is solved in L_2(R), and the optimal recovery problem for such differential operator is considered.展开更多
Sound propagation and the initial value problems in gas mixtures of two components are investigated. By using the eigen theory of linearized Boltzmann equations, a model equations is formed, with the use of the Fourie...Sound propagation and the initial value problems in gas mixtures of two components are investigated. By using the eigen theory of linearized Boltzmann equations, a model equations is formed, with the use of the Fourier-Laplace transform for model equations derived, the dispersion relations for both components are obtained.展开更多
The operator sets, which are the subject of this paper, have been studied in many papers where, under different restrictions on the generating operators, convexity, compactness in the weak operator topology, and nonem...The operator sets, which are the subject of this paper, have been studied in many papers where, under different restrictions on the generating operators, convexity, compactness in the weak operator topology, and nonemptiness were proved for sets of different classes under study. Then the results obtained were used in these papers to solve several applied problems. Namely, they played the key role in establishing the dichotomy of nonautonomous dynamical systems, with either continuous or discrete time. In the present paper, we generalize and sharpen the already known criteria and obtain several new criteria for convexity, compactness, and nonemptiness of several special operator sets. Then, using the assertions obtained, we construct examples of sets of the form under study which are nonconvex, noncompact in the weak operator topology, as well as empty, and are generated by "smooth" operators of a special class. The existence problem for such sets remained open until the authors of this paper announced some of its results.展开更多
文摘We consider plus-operators in Krein spaces and generated operator linear fractional relations of the following form: . We study some special type of factorization for plus-operators T, among them the following one: T = BU, where B is a lower triangular plus-operator, U is a J-unitary operator. We apply the above factorization to the study of basical properties of relations (1), in particular, convexity and compactness of their images with respect to the weak operator topology. Obtained results we apply to the known Koenigs embedding problem, the Krein-Phillips problem of existing of invariant semidefinite subspaces for some families of plus-operators and to some other fields.
文摘In this article, we introduce the concept of demicompactness with respect to a closed densely defined linear operator, as a generalization of the class of demicompact operator introduced by Petryshyn in [24] and we establish some new results in Fredholm theory. Moreover, we apply the obtained results to discuss the incidence of some perturbation results on the behavior of relative essential spectra of unbounded linear operators acting on Banach spaces. We conclude by characterizations of the relative Schechter's and approximate essential spectrum.
基金Supported by the National Fund of Natural Sciences.
文摘In this paper a generalized version of the classical Hardy-Littlewood-Polya inequality is given.Furthermore,the Stechkin's problem for a linear differential operator is solved in L_2(R), and the optimal recovery problem for such differential operator is considered.
基金Supported by National Natural Science Foundation of China under Grant No.10861008the "211 Project" Innovative Talents Training Program of Inner Mongolia University and Grant-in-Aid for Scientific Research from Inner Mongolia University of Technology under Grant No.ZS201032
文摘Sound propagation and the initial value problems in gas mixtures of two components are investigated. By using the eigen theory of linearized Boltzmann equations, a model equations is formed, with the use of the Fourier-Laplace transform for model equations derived, the dispersion relations for both components are obtained.
文摘The operator sets, which are the subject of this paper, have been studied in many papers where, under different restrictions on the generating operators, convexity, compactness in the weak operator topology, and nonemptiness were proved for sets of different classes under study. Then the results obtained were used in these papers to solve several applied problems. Namely, they played the key role in establishing the dichotomy of nonautonomous dynamical systems, with either continuous or discrete time. In the present paper, we generalize and sharpen the already known criteria and obtain several new criteria for convexity, compactness, and nonemptiness of several special operator sets. Then, using the assertions obtained, we construct examples of sets of the form under study which are nonconvex, noncompact in the weak operator topology, as well as empty, and are generated by "smooth" operators of a special class. The existence problem for such sets remained open until the authors of this paper announced some of its results.