A linear voltage regulator was irradiated by ^(60)Coγat high and low dose rates with two bias conditions to investigate the dose rate effect.The devices exhibit enhanced low dose rate sensitivity(ELDRS) under bot...A linear voltage regulator was irradiated by ^(60)Coγat high and low dose rates with two bias conditions to investigate the dose rate effect.The devices exhibit enhanced low dose rate sensitivity(ELDRS) under both biases. Comparing the enhancement factors between zero and working biases,it was found that the ELDRS is more severe under zero bias conditions.This confirms that the ELDRS is related to the low electric field in a bipolar structure. The reasons for the change in the line regulation and the maximum drive current were analyzed by combining the principle of linear voltage regulator with irradiation response of the transistors and error amplifier in the regulator. This may be helpful for designing radiation hardened devices.展开更多
Radiation-induced 1/f noise degradation in the LM117 bipolar linear voltage regulator is studied. Based on the radiation-induced degradation mechanism of the output voltage, it is suggested that the band-gap reference...Radiation-induced 1/f noise degradation in the LM117 bipolar linear voltage regulator is studied. Based on the radiation-induced degradation mechanism of the output voltage, it is suggested that the band-gap reference subcircuit is the critical component which leads to the 1/f noise degradation of the LM117. The radiation makes the base surface current of the bipolar junction transistors of the band-gap reference subcircuit increase, which leads to an increase in the output 1/f noise of the LM117. Compared to the output voltage, the 1/f noise parameter is more sensitive, it may be used to evaluate the radiation resistance capability of LM117.展开更多
文摘A linear voltage regulator was irradiated by ^(60)Coγat high and low dose rates with two bias conditions to investigate the dose rate effect.The devices exhibit enhanced low dose rate sensitivity(ELDRS) under both biases. Comparing the enhancement factors between zero and working biases,it was found that the ELDRS is more severe under zero bias conditions.This confirms that the ELDRS is related to the low electric field in a bipolar structure. The reasons for the change in the line regulation and the maximum drive current were analyzed by combining the principle of linear voltage regulator with irradiation response of the transistors and error amplifier in the regulator. This may be helpful for designing radiation hardened devices.
基金Project supported by the National Natural Science Foundation of China(Nos.61076101,61204092)
文摘Radiation-induced 1/f noise degradation in the LM117 bipolar linear voltage regulator is studied. Based on the radiation-induced degradation mechanism of the output voltage, it is suggested that the band-gap reference subcircuit is the critical component which leads to the 1/f noise degradation of the LM117. The radiation makes the base surface current of the bipolar junction transistors of the band-gap reference subcircuit increase, which leads to an increase in the output 1/f noise of the LM117. Compared to the output voltage, the 1/f noise parameter is more sensitive, it may be used to evaluate the radiation resistance capability of LM117.