Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used ...Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used in various precision/ultra-precision positioning fields.However,the main challenge with these devices is the inherent hysteresis nonlinearity of piezoelectric actuators,which seriously affects the tracking accuracy of a piezoelectric stage.Inspired by this challenge,in this work,we developed a Hammerstein model to describe the hysteresis nonlinearity of a piezoelectric stage.In particular,in our proposed scheme,a feedback-linearization algorithm is used to eliminate the static hysteresis nonlinearity.In addition,a composite controller based on equivalent-disturbance compensation was designed to counteract model uncertainties and external disturbances.An analysis of the stability of a closed-loop system based on this feedback-linearization algorithm and composite controller was performed,and this was followed by extensive comparative experiments using a piezoelectric stage developed in the laboratory.The experimental results confirmed that the feedback-linearization algorithm and the composite controller offer improved linearization and trajectory-tracking performance.展开更多
An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations.The concentrated plastic hinges,described by the Bouc-Wen model,are as...An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations.The concentrated plastic hinges,described by the Bouc-Wen model,are assumed to occur at the two ends of a linear-elastic beam element.The auxiliary differential equations governing the plastic rotational displacements and their corresponding hysteretic displacements are replaced with linearized differential equations.Then,the two sets of equations of motion for the original nonlinear system can be reduced to an expanded-order equivalent linearized equation of motion for equivalent linear systems.To solve the equation of motion for equivalent linear systems,the nonstationary random vibration analysis is carried out based on the explicit time-domain method with high efficiency.Finally,the proposed treatment method for initial values of equivalent parameters is investigated in conjunction with parallel computing technology,which provides a new way of obtaining the equivalent linear systems at different time instants.Based on the explicit time-domain method,the key responses of interest of the converged equivalent linear system can be calculated through dimension reduction analysis with high efficiency.Numerical examples indicate that the proposed approach has high computational efficiency,and shows good applicability to weak nonlinear and medium-intensity nonlinear systems.展开更多
We show that an intrinsically nonlinear oscillator can always be transformed into a linear or harmonic oscillator by addition of a constant force, which shifts the equilibrium position of the oscillator.
无铁芯超导直线同步电机(superconducting linear synchronous motor,SLSM)具有推力密度高、工作气隙大等优势,是超导磁浮列车的动力核心。由于会不可避免地受到弯道、道岔、横风和电源谐波等因素的影响,磁浮列车在运行过程中将发生多...无铁芯超导直线同步电机(superconducting linear synchronous motor,SLSM)具有推力密度高、工作气隙大等优势,是超导磁浮列车的动力核心。由于会不可避免地受到弯道、道岔、横风和电源谐波等因素的影响,磁浮列车在运行过程中将发生多自由度运动,使电机次级姿态发生滚转或偏移,致使超导直线电机的电磁力性能发生改变,进而影响列车的运行稳定性。针对多变电机次级姿态下高温超导直线同步电机的三维力特性展开研究,首先分析悬浮车体多自由度运动对直线电机次级姿态的影响,并建立计算SLSM三维电磁力的有限元模型;其次,通过搭建超导同步直线电机样机,实验验证模型的有效性;最后,基于该模型研究无铁芯SLSM次级在发生横向偏移、法向偏移、侧滚、俯仰以及偏航条件下的三维电磁力输出特性及其变化规律,为超导磁浮列车运行性能优化提供了理论依据。展开更多
基金supported by the National Key R&D Program of China (Grant No.2022YFB3206700)the Independent Research Project of the State Key Laboratory of Mechanical Transmission (Grant No.SKLMT-ZZKT-2022M06)the Innovation Group Science Fund of Chongqing Natural Science Foundation (Grant No.cstc2019jcyj-cxttX0003).
文摘Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used in various precision/ultra-precision positioning fields.However,the main challenge with these devices is the inherent hysteresis nonlinearity of piezoelectric actuators,which seriously affects the tracking accuracy of a piezoelectric stage.Inspired by this challenge,in this work,we developed a Hammerstein model to describe the hysteresis nonlinearity of a piezoelectric stage.In particular,in our proposed scheme,a feedback-linearization algorithm is used to eliminate the static hysteresis nonlinearity.In addition,a composite controller based on equivalent-disturbance compensation was designed to counteract model uncertainties and external disturbances.An analysis of the stability of a closed-loop system based on this feedback-linearization algorithm and composite controller was performed,and this was followed by extensive comparative experiments using a piezoelectric stage developed in the laboratory.The experimental results confirmed that the feedback-linearization algorithm and the composite controller offer improved linearization and trajectory-tracking performance.
基金Fundamental Research Funds for the Central Universities under Grant No.2682022CX072the Research and Development Plan in Key Areas of Guangdong Province under Grant No.2020B0202010008。
文摘An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations.The concentrated plastic hinges,described by the Bouc-Wen model,are assumed to occur at the two ends of a linear-elastic beam element.The auxiliary differential equations governing the plastic rotational displacements and their corresponding hysteretic displacements are replaced with linearized differential equations.Then,the two sets of equations of motion for the original nonlinear system can be reduced to an expanded-order equivalent linearized equation of motion for equivalent linear systems.To solve the equation of motion for equivalent linear systems,the nonstationary random vibration analysis is carried out based on the explicit time-domain method with high efficiency.Finally,the proposed treatment method for initial values of equivalent parameters is investigated in conjunction with parallel computing technology,which provides a new way of obtaining the equivalent linear systems at different time instants.Based on the explicit time-domain method,the key responses of interest of the converged equivalent linear system can be calculated through dimension reduction analysis with high efficiency.Numerical examples indicate that the proposed approach has high computational efficiency,and shows good applicability to weak nonlinear and medium-intensity nonlinear systems.
文摘We show that an intrinsically nonlinear oscillator can always be transformed into a linear or harmonic oscillator by addition of a constant force, which shifts the equilibrium position of the oscillator.
文摘无铁芯超导直线同步电机(superconducting linear synchronous motor,SLSM)具有推力密度高、工作气隙大等优势,是超导磁浮列车的动力核心。由于会不可避免地受到弯道、道岔、横风和电源谐波等因素的影响,磁浮列车在运行过程中将发生多自由度运动,使电机次级姿态发生滚转或偏移,致使超导直线电机的电磁力性能发生改变,进而影响列车的运行稳定性。针对多变电机次级姿态下高温超导直线同步电机的三维力特性展开研究,首先分析悬浮车体多自由度运动对直线电机次级姿态的影响,并建立计算SLSM三维电磁力的有限元模型;其次,通过搭建超导同步直线电机样机,实验验证模型的有效性;最后,基于该模型研究无铁芯SLSM次级在发生横向偏移、法向偏移、侧滚、俯仰以及偏航条件下的三维电磁力输出特性及其变化规律,为超导磁浮列车运行性能优化提供了理论依据。