期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Influence of secondary lining thickness on mechanical behaviours of double-layer lining in large-diameter shield tunnels
1
作者 Shimin Wang Xuhu He +3 位作者 Xiaoyu Peng Ya Wang Zhengxin Li Zihan 《Underground Space》 SCIE EI CSCD 2024年第5期130-150,共21页
In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in t... In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in the design of a double lining structure,which is worth being explored.Based on an actual large-diameter shield tunnel,loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure.The test results show that within the range of secondary lining thicknesses discussed,the load-bearing limit of the double-layer lining increases with growing secondary lining thickness.As a passive support,the secondary lining acts as an auxiliary load-bearing structure by contacting the segment.And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining,with both the contact pressure level and the contact area between the two varying.For double-layer lining structures in large-diameter shield tunnels,it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment,as this allows them to have a coordinated deformation and a good joint load-bearing effect. 展开更多
关键词 Large-diameter shield tunnels Double-layer lining structure Secondary lining thickness Stiffness matching Similar model test
下载PDF
Study on Crack Propagation Parameters of Tunnel Lining Structure Based on Peridynamics
2
作者 Zhihui Xiong Xiaohui Zhou +2 位作者 Jinjie Zhao Hao Cui Bo Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2449-2478,共30页
The numerical simulation results utilizing the Peridynamics(PD)method reveal that the initial crack and crack propagation of the tunnel concrete lining structure agree with the experimental data compared to the Japane... The numerical simulation results utilizing the Peridynamics(PD)method reveal that the initial crack and crack propagation of the tunnel concrete lining structure agree with the experimental data compared to the Japanese prototype lining test.The load structure model takes into account the cracking process and distribution of the lining segment under the influence of local bias pressure and lining thickness.In addition,the influence of preset cracks and lining section formon the crack propagation of the concrete lining model is studied.This study evaluates the stability and sustainability of tunnel structure by the Peridynamics method,which provides a reference for the analysis of the causes of lining cracks,and also lays a foundation for the prevention,reinforcement and repair of tunnel lining cracks. 展开更多
关键词 PERIDYNAMICS lining crack crack propagation local bias pressure lining thickness preset crack
下载PDF
A methodology for lining design of circular mine shafts in different rock masses 被引量:2
3
作者 Ozturk Hasan Guler Erdogan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期761-768,共8页
In this study, the finite element numerical modelling of 2D shaft sections in a Hoek–Brown medium are carried out in a non-hydrostatic stress state in an attempt to predict pressures developing around mine shafts. An... In this study, the finite element numerical modelling of 2D shaft sections in a Hoek–Brown medium are carried out in a non-hydrostatic stress state in an attempt to predict pressures developing around mine shafts. An iterative process of applying support pressure until observing no failure zone around the shaft is used to simulate the required lining support pressure for different shaft models. Later, regression analysis is carried out to find a generic shaft pressure equation representing the rock mass and the stress state. Finally, the developed pressure equation which shows a good agreement with a case study is used in elastic ‘‘thick-walled cylinder" equation to calculate the lining thickness required to prevent the development of a failure zone around the shaft. At the end of the study, a user-friendly object-oriented computer program ‘‘Shaft 2D" is developed to simplify the rigorous shaft lining thickness calculation process. 展开更多
关键词 lining thickness Shaft support SHAFT Non-hydrostatic stress
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部