期刊文献+
共找到174篇文章
< 1 2 9 >
每页显示 20 50 100
Effect of Wave Nonlinearity on the Instantaneous Seabed Liquefaction
1
作者 WANG Zhao-jun SUI Ti-ti +1 位作者 ZHANG Chi PAN Jun-ning 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期93-103,共11页
The nonlinear variation of wave is commonly seen in nearshore area,and the resulting seabed response and liquefaction are of high concern to coastal engineers.In this study,an analytical formula considering the nonlin... The nonlinear variation of wave is commonly seen in nearshore area,and the resulting seabed response and liquefaction are of high concern to coastal engineers.In this study,an analytical formula considering the nonlinear wave skewness and asymmetry is adopted to provide wave pressure on the seabed surface.The liquefaction depth attenuation coefficient and width growth coefficient are defined to quantitatively characterize the nonlinear effect of wave on seabed liquefaction.Based on the 2D full dynamic model of wave-induced seabed response,a detailed parametric study is carried out in order to evaluate the influence of the nonlinear variation of wave loadings on seabed liquefaction.Further,new empirical prediction formulas are proposed to fast predict the maximum liquefaction under nonlinear wave.Results indicate that(1)Due to the influence of wave nonlinearity,the vertical transmission of negative pore water pressure in the seabed is hindered,and therefore,the amplitude decreases significantly.(2)In general,with the increase of wave nonlinearity,the liquefaction depth of seabed decreases gradually.Especially under asymmetric and skewed wave loading,the attenuation of maximum seabed liquefaction depth is the most significant among all the nonlinear wave conditions.However,highly skewed wave can cause the liquefaction depth of seabed greater than that under linear wave.(3)The asymmetry of wave pressure leads to the increase of liquefaction width,whereas the influence of skewedness is not significant.(4)Compared with the nonlinear waveform,seabed liquefaction is more sensitive to the variation of nonlinear degree of wave loading. 展开更多
关键词 nonlinear wave seabed response seabed liquefaction numerical simulation liquefaction prediction
下载PDF
Liquefaction and post-liquefaction behaviors of sands affected by immersion-induced degradation of crushed mudstone
2
作者 Tadao Enomoto 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1799-1812,共14页
A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing b... A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing behavior without precedent cyclic-loading histories of sands containing crushed mudstone.The tested materials with a main particle diameter of 2-0.85 mm were prepared by mixing sands and crushed mudstone to reach the prescribed mudstone content defined by dry mass ranging from 0% to 50%.The mixtures were subjected to immersion under a certain stress level and were subsequently tested.In addition,one-dimensional compression tests were also supplementally performed to visually observe the immersion-induced degradation of crushed mudstone.The test results mainly showed that: (1) the liquefaction resistance,the post-liquefaction undrained strength,and the undrained strength without a precedent cyclic-loading history decreased significantly with increasing mudstone content,M c ,up to 20%;(2) even a small amount of crushed mudstone affected these strengths;(3) the above-mentioned large reductions in the strengths were attributed to the immersion-induced degradation of crushed mudstone;(4) at M c  > 20%,the liquefaction resistance increased while the significant increase in the undrained static strengths with and without precedent cyclic-loading histories was not observed;and (5) the increase in the liquefaction resistance at M c  > 20% may have been attributed to both the gradual increase in the plasticity and the formation of the soil aggregates among deteriorated crushed mudstone,while the increase in the specimen density did not play an important role in such behavior. 展开更多
关键词 liquefaction Post-liquefaction behavior Triaxial test Sands containing crushed mudstone
下载PDF
Liquefaction susceptibility and deformation characteristics of saturated coral sandy soils subjected to cyclic loadings-a critical review
3
作者 Chen Guoxing Qin You +3 位作者 Ma Weijia Liang Ke Wu Qi C.Hsein Juang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期261-296,共36页
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons... Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments. 展开更多
关键词 liquefaction susceptibility dynamic deformation characteristics coral sandy soil cyclic loading review and prospect
下载PDF
The Analysis of the Correlation between SPT and CPT Based on CNN-GA and Liquefaction Discrimination Research
4
作者 Ruihan Bai Feng Shen +2 位作者 Zihao Zhao Zhiping Zhang Qisi Yu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1159-1182,共24页
The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires f... The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires field testing and canbe time-consuming and labor-intensive. In contrast, the cone penetration test (CPT) provides a more convenientmethod and offers detailed and continuous information about soil layers. In this study, the feature matrix based onCPT data is proposed to predict the standard penetration test blow count N. The featurematrix comprises the CPTcharacteristic parameters at specific depths, such as tip resistance qc, sleeve resistance f s, and depth H. To fuse thefeatures on the matrix, the convolutional neural network (CNN) is employed for feature extraction. Additionally,Genetic Algorithm (GA) is utilized to obtain the best combination of convolutional kernels and the number ofneurons. The study evaluated the robustness of the proposed model using multiple engineering field data sets.Results demonstrated that the proposed model outperformed conventional methods in predicting N values forvarious soil categories, including sandy silt, silty sand, and clayey silt. Finally, the proposed model was employedfor liquefaction discrimination. The liquefaction discrimination based on the predicted N values was comparedwith the measured N values, and the results showed that the discrimination results were in 75% agreement. Thestudy has important practical application value for foundation liquefaction engineering. Also, the novel methodadopted in this research provides new ideas and methods for research in related fields, which is of great academicsignificance. 展开更多
关键词 CNN liquefaction discrimination SPT CPT
下载PDF
Effect of particle composition and consolidation degree on the wave-induced liquefaction of soil beds
5
作者 Zhiyuan Chen Yupeng Ren +1 位作者 Guohui Xu Meng Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期11-22,共12页
The wave-induced liquefaction of seabed is responsible for causing damage to marine structures.Particle composition and consolidation degree are the key factors affecting the pore water pressure response and liquefact... The wave-induced liquefaction of seabed is responsible for causing damage to marine structures.Particle composition and consolidation degree are the key factors affecting the pore water pressure response and liquefaction behavior of the seabed under wave action.The present study conducted wave flume experiments on silt and silty fine sand beds with varying particle compositions.Furthermore,a comprehensive analysis of the differences and underlying reasons for liquefaction behavior in two different types of soil was conducted from both macroscopic and microscopic perspectives.The experimental results indicate that the silt bed necessitates a lower wave load intensity to attain the liquefaction state in comparison to the silty fine sand bed.Additionally,the duration and development depth of liquefaction are greater in the silt bed.The dissimilarity in liquefaction behavior between the two types of soil can be attributed to the variation in their permeability and plastic deformation capacity.The permeability coefficient and compression modulus of silt are lower than those of silty fine sand.Consequently,silt is more prone to the accumulation of pore pressure and subsequent liquefaction under external loading.Prior research has demonstrated that silt beds with varying consolidation degrees exhibit distinct initial failure modes.Specifically,a dense bed undergoes shear failure,whereas a loose bed experiences initial liquefaction failure.This study utilized discrete element simulation to examine the microscopic mechanisms that underlie this phenomenon. 展开更多
关键词 wave flume liquefaction pore water pressure consolidation permeability experiment discrete element simulation
下载PDF
Application of machine learning to the Vs-based soil liquefaction potential assessment
6
作者 SUI Qi-ru CHEN Qin-huang +1 位作者 WANG Dan-dan TAO Zhi-gang 《Journal of Mountain Science》 SCIE CSCD 2023年第8期2197-2213,共17页
Earthquakes can cause violent liquefaction of the soil, resulting in unstable foundations that can cause serious damage to facilities such as buildings, roads, and dikes. This is a primary cause of major earthquake di... Earthquakes can cause violent liquefaction of the soil, resulting in unstable foundations that can cause serious damage to facilities such as buildings, roads, and dikes. This is a primary cause of major earthquake disasters. Therefore, the discrimination and prediction of earthquake-induced soil liquefaction has been a hot issue in geohazard research. The soil liquefaction assessment is an integral part of engineering practice. This paper evaluated a dataset of 435 seismic sand liquefaction events using machine learning algorithms. The dataset was analyzed using seven potential assessment parameters. Ten machine learning algorithms are evaluated for their ability to assess seismic sand liquefaction potential, including Linear Discriminant Analysis(LDA), Quadratic Discriminant Analysis(QDA), Naive Bayes(NB), KNearest Neighbor(KNN), Artificial Neural Network(ANN), Classification Tree(CT), Support Vector Machine(SVM), Random Forest(RF), e Xtreme Gradient Boosting(XGBoost), Light Gradient Boosting Machine(Light GBM). A 10-fold cross-validation(CV) method was used in the modeling process to verify the predictive performance of the machine learning models. The final percentages of significant parameters that influenced the prediction results were obtained as Cyclic Stress Ratio(CSR) and Shear-Wave Velocity( VS1) with 56% and 38%, respectively. The final machine learning algorithms identified as suitable for seismic sand liquefaction assessment were the CT, RF, XGBoost algorithms, with the RF algorithm performing best. 展开更多
关键词 Seismic soil liquefaction Machine learning ASSESSMENT liquefaction potential shear wave velocity
原文传递
Seismic Liquefaction Resistance Based on Strain Energy Concept Considering Fine Content Value Effect and Performance Parametric Sensitivity Analysis 被引量:1
7
作者 Nima Pirhadi Xusheng Wan +3 位作者 Jianguo Lu Jilei Hu Mahmood Ahmad Farzaneh Tahmoorian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期733-754,共22页
Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate... Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate liquefaction potential.In this study,two Artificial Neural Network(ANN)models were developed to estimate the liquefaction resistance of sandy soil based on the capacity strain energy concept(W)by using laboratory test data.A large database was collected from the literature.One group of the dataset was utilized for validating the process in order to prevent overtraining the presented model.To investigate the complex influence of fine content(FC)on liquefaction resistance,according to previous studies,the second database was arranged by samples with FC of less than 28%and was used to train the second ANN model.Then,two presented ANN models in this study,in addition to four extra available models,were applied to an additional 20 new samples for comparing their results to show the capability and accuracy of the presented models herein.Furthermore,a parametric sensitivity analysis was performed through Monte Carlo Simulation(MCS)to evaluate the effects of parameters and their uncertainties on the liquefaction resistance of soils.According to the results,the developed models provide a higher accuracy prediction performance than the previously publishedmodels.The sensitivity analysis illustrated that the uncertainties of grading parameters significantly affect the liquefaction resistance of soils. 展开更多
关键词 liquefaction resistance capacity strain energy artificial neural network sensitivity analysis Monte Carlo Simulation
下载PDF
Constitutive modelling of fabric effect on sand liquefaction
8
作者 Zhiwei Gao Dechun Lu +1 位作者 Yue Hou Xin Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期926-936,共11页
Sand liquefaction under static and dynamic loading can cause failure of embankments,slopes,bridges and other important infrastructure.Sand liquefaction in the seabed can also cause submarine landslides and tsunamis.Fa... Sand liquefaction under static and dynamic loading can cause failure of embankments,slopes,bridges and other important infrastructure.Sand liquefaction in the seabed can also cause submarine landslides and tsunamis.Fabric anisotropy related to the internal soil structure such as particle orientation,force network and void space is found to have profound influence on sand liquefaction.A constitutive model accounting for the effect of anisotropy on sand liquefaction is proposed.Evolution of fabric anisotropy during loading is considered according to the anisotropic critical state theory for sand.The model has been validated by extensive test results on Toyoura sand with different initial densities and stress states.The effect of sample preparation method on sand liquefaction is qualitatively analysed.The model has been used to investigate the response of a sand ground under earthquake loading.It is shown that sand with horizontal bedding plane has the highest resistance to liquefaction when the sand deposit is anisotropic,which is consistent with the centrifuge test results.The initial degree of fabric anisotropy has a more significant influence on the liquefaction resistance.Sand with more anisotropic fabric that can be caused by previous loading history or compaction methods has lower liquefaction resistance. 展开更多
关键词 SAND ANISOTROPY liquefaction Finite element modelling Constitutive model
下载PDF
Effects of non-liquefiable crust layer and superstructure mass on the response of 2×2 pile groups to liquefaction-induced lateral spreading
9
作者 S.Mohsen Haeri Morteza Rajabigol +2 位作者 Saman Salaripour Hiwa Sayaf Milad Zangeneh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2701-2719,共19页
In this research,two shake table experiments were conducted to study the effects of non-liquefiable crust layer and superstructure mass on the responses of two sets of 22 pile groups to liquefactioninduced lateral spr... In this research,two shake table experiments were conducted to study the effects of non-liquefiable crust layer and superstructure mass on the responses of two sets of 22 pile groups to liquefactioninduced lateral spreading.In this regard,an inclined base layer overlain by a very loose liquefiable layer was constructed in both models;while only in one model,a non-liquefiable crust layer was built.A lumped mass,being representative of a superstructure,was attached to the cap of one pile group in both models.The models were fully instrumented with various sensors,including acceleration,displacement,and pore water pressure transducers.Also,the piles were instrumented with pair strain gauges to measure pure bending moments induced by cyclic and monotonic loadings associated with ground shaking and lateral spreading,respectively.The results showed that the existence of the non-liquefiable crust layer increases both the maximum and residual soil displacements at the free field and also the maximum bending moments in the piles.The results of the experiments indicated that the crust layer induces a high kinematic lateral soil pressure and force on the piles which are not present in the crustless case.The crust layer increases the pile cap displacement before liquefaction,albeit decreases it after liquefaction,due to the elastic rebound of the piles in the liquefiable layer.The crust layer postpones both liquefaction triggering and dissipation of excess pore water pressure.The existence of the superstructure mass on the pile caps decreases the acceleration amplitude of the pile caps,while increases their maximum displacement. 展开更多
关键词 Soil liquefaction Lateral spreading 1g shake table test Pile group Crust layer SUPERSTRUCTURE
下载PDF
Liquefaction proneness of stratified sand-silt layers based on cyclic triaxial tests
10
作者 Arpit Jain Satyendra Mittal Sanjay Kumar Shukla 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1826-1845,共20页
Most studies on liquefaction have addressed homogeneous soil strata using sand or sand with fine content without considering soil stratification.In this study,cyclic triaxial tests were conducted on the stratified san... Most studies on liquefaction have addressed homogeneous soil strata using sand or sand with fine content without considering soil stratification.In this study,cyclic triaxial tests were conducted on the stratified sand specimens embedded with the silt layers to investigate the liquefaction failures and void-redistribution at confining stress of 100 kPa under stress-controlled mode.The loosening of underlying sand mass and hindrance to pore-water flow caused localized bulging at the sand-silt interface.It is observed that at a silt thickness of 0.2H(H is the height of the specimen),nearly 187 load cycles were required to attain liquefaction,which was the highest among all the silt thicknesses with a single silt layer.Therefore,0.2H is assumed as the optimum silt thickness(t_(opt)).The silt was placed at the top,middle and bottom of the specimen to understand the effect of silt layer location.Due to the increase in depth of the silt layer from the top position(capped soil state)to the bottom,the cycles to reach liquefaction(N_(cyc,L))increased 2.18 times.Also,when the number of silt layers increased from single to triple,there was an increase of about 880%in N_(cyc,L).The micro-characterization analysis of the soil specimens indicated silty materials transported in upper sections of the specimen due to the dissipated pore pressure.The main parameters,including thickness(t),location(z),cyclic stress ratio(CSR),number of silt layers(n)and modified relative density(D_(r,m)),performed significantly in governing the lique-faction resistance.For this,a multilinear regression model is developed based on critical parameters for prediction of N_(cyc,L).Furthermore,the developed constitutive model has been validated using the data from the present study and earlier findings. 展开更多
关键词 Cyclic triaxial tests Soil stratification Soil liquefaction Regression model
下载PDF
Calibration of an elastoplastic model of sand liquefaction using the swarm intelligence with a multi-objective function
11
作者 Qiutong Li Zhehao Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期789-802,共14页
According to post-seismic observations,spectacular examples of engineering failures can be ascribed to the occurrence of sand liquefaction,where a sandy soil stratum could undergo a transient loss of shear strength an... According to post-seismic observations,spectacular examples of engineering failures can be ascribed to the occurrence of sand liquefaction,where a sandy soil stratum could undergo a transient loss of shear strength and even behave as a“liquid”.Therefore,correct simulation of liquefaction response has become a challenging issue in geotechnical engineering field.In advanced elastoplastic models of sand liquefaction,certain fitting parameters have a remarkable effect on the computed results.However,the identification of these parameters,based on the experimental data,is usually intractable and sometimes follows a subjective trial-and-error procedure.For this,this paper presented a novel calibration methodology based on an optimization algorithm(particle swarm optimization(PSO))for an advanced elastoplastic constitutive model.A multi-objective function was designed to adjust the global quality for both monotonic and cyclic triaxial simulations.To overcome computational problem probably appearing in simulation of the cyclic triaxial test,two interrupt mechanisms were designed to prevent the particles from wasting time in searching the unreasonable space of candidate solutions.The Dafalias model has been used as an example to demonstrate the main programme.With the calibrated parameters for the HN31 sand,the computed results were highly consistent with the laboratory experiments(including monotonic triaxial tests under different confining pressures and cyclic triaxial tests in two loading modes).Finally,an extension example is given for Ottawa sand F65,suggesting that the proposed platform is versatile and can be easily customized to meet different practical needs. 展开更多
关键词 Particle swarm optimization(PSO) Sand liquefaction Elastoplastic constitutive model Triaxial test
下载PDF
Fabric characteristics of in situ sand with/without liquefaction verified by anisotropy of magnetic susceptibility
12
作者 Xueqian Ni Junnan Ma +1 位作者 Hide Sakaguchi Feng Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1274-1283,共10页
It is well known that fabric of sand may significantly affect mechanical behaviors and liquefaction resistance of sand.Various optical techniques are currently utilized to visualize the fabric,especially the distribut... It is well known that fabric of sand may significantly affect mechanical behaviors and liquefaction resistance of sand.Various optical techniques are currently utilized to visualize the fabric,especially the distribution of the long axis of soil particles.However,none of these methods provides an ideal solution in laboratory tests and in situ observation.In this study,anisotropy of magnetic susceptibility(AMS)was first proposed as a convenient and efficient way to evaluate the liquefaction of clean sand.At first,investigations with scanning electron microscopy(SEM)and AMS were simultaneously conducted on two groups of soil specimens with different initial fabrics to verify the feasibility of the AMS technique.Then,80 in situ samples were collected to analyze the feature of liquefied and non-liquefied sand layers through AMS tests.It is clearly known from the test results that the natural sedimentary fabric was destroyed during liquefaction and the fabric anisotropy was greatly changed after liquefaction.The feasibility of evaluating soil fabric using the AMS survey was verified by the laboratory tests.Furthermore,the applicability of AMS in detecting liquefied layer in situ was confirmed for the first time. 展开更多
关键词 Sand liquefaction Soil fabric Anisotropy of magnetic susceptibility(AMS) Geotechnical seismic engineering
下载PDF
Study regarding typical liquefaction damage during the 2021 Maduo M_(s)7.4 earthquake in China
13
作者 Yuan Jinyuan Wang Yunlong +4 位作者 Ma Jiajun Zhan Beilei Yuan Xiaoming Wang Lanmin Wu Xiaoyang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期895-908,共14页
The most important method of understanding liquefaction-induced engineering failures comes from the investigation and analysis of earthquake damage.In May 2021,the Maduo M_(s)7.4 earthquake occurred on the Tibetan Pla... The most important method of understanding liquefaction-induced engineering failures comes from the investigation and analysis of earthquake damage.In May 2021,the Maduo M_(s)7.4 earthquake occurred on the Tibetan Plateau of China.The most representative engineering disaster caused by this earthquake was bridge damage on liquefied sites.In this study,the mutual relationships between the anti-liquefaction pre-design situation,the ground motion intensity,the site liquefaction severity,and the bridge damage state for this earthquake were systematically analyzed for typical bridge damage on the liquefied sites.Using field survey data and the current Chinese industry code,simulations of the liquefaction scenarios at typical bridge sites were performed for the pre-design seismic ground motion before the earthquake and the seismic ground motion during the earthquake.By combining these results with post-earthquake investigation results,the reason for the serious bridge damage resulting from this earthquake is revealed,and the necessary conditions for avoiding serious seismic damage to bridges built in liquefiable sites is presented. 展开更多
关键词 seismic liquefaction Maduo M_(s)7.4 earthquake bridge damage seismic code
下载PDF
Effect of Refrigerant on the Performance of a C3/MRC Liquefaction Process
14
作者 Xiao Wu Zhaoting Wang +2 位作者 Longfei Dong Yanping Xin Tianshu Yu 《Fluid Dynamics & Materials Processing》 EI 2023年第1期25-36,共12页
The Mixed Refrigerant(MR)component is an important factor influencing the performances of natural gas lique-faction processes.However,there is a lack of systematic research about the utilization of propane pre-cooled(... The Mixed Refrigerant(MR)component is an important factor influencing the performances of natural gas lique-faction processes.However,there is a lack of systematic research about the utilization of propane pre-cooled(C3/MRC).In this paper,this mixed refrigerant cycle liquefaction process is simulated using the HYSYS software and the main influential parameters involved in the process are varied to analyze their influence on the liquefaction rate and power consumption.The results show that an effective way for lowering the power consumption of the compressor consists of reducing the flow through the compressor through optimization of the percentage of mixed refrigerant.The power consumption of the compressor in the hybrid refrigeration process is affected by both flow and pressure ratios.Its specific power consumption can be reduced by increasing the flow and decreasing the pressure ratio at the same time.The increase in refrigerant pressure at the high-pressure end can significantly mitigate the energy loss of the heat exchanger and compressor. 展开更多
关键词 REFRIGERANT C3/MRC process liquefaction performance power consumption pressure ratio hybrid refrigeration process
下载PDF
A case-based reasoning method of recognizing liquefaction pits induced by 2021 M_(W) 7.3 Madoi earthquake
15
作者 Peng Liang Yueren Xu +2 位作者 Wenqiao Li Yanbo Zhang Qinjian Tian 《Earthquake Research Advances》 CSCD 2023年第1期61-69,共9页
Earthquake-triggered liquefaction deformation could lead to severe infrastructure damage and associated casualties and property damage.At present,there are few studies on the rapid extraction of liquefaction pits base... Earthquake-triggered liquefaction deformation could lead to severe infrastructure damage and associated casualties and property damage.At present,there are few studies on the rapid extraction of liquefaction pits based on high-resolution satellite images.Therefore,we provide a framework for extracting liquefaction pits based on a case-based reasoning method.Furthermore,five covariates selection methods were used to filter the 11 covariates that were generated from high-resolution satellite images and digital elevation models(DEM).The proposed method was trained with 450 typical samples which were collected based on visual interpretation,then used the trained case-based reasoning method to identify the liquefaction pits in the whole study area.The performance of the proposed methods was evaluated from three aspects,the prediction accuracies of liquefaction pits based on the validation samples by kappa index,the comparison between the pre-and post-earthquake images,the rationality of spatial distribution of liquefaction pits.The final result shows the importance of covariates ranked by different methods could be different.However,the most important of covariates is consistent.When selecting five most important covariates,the value of kappa index could be about 96%.There also exist clear differences between the pre-and post-earthquake areas that were identified as liquefaction pits.The predicted spatial distribution of liquefaction is also consistent with the formation principle of liquefaction. 展开更多
关键词 Coseismic liquefaction Case-based reasoning K-nearest neighbor Covariates selection 2021 M_(w)7.3 Madoi earthquake Qinghai-Tibetan Plateau
下载PDF
Kinetics and Process Studies of the Potential for Transformation of Biogas to Biomethane and Liquefaction using Cryogenic Liquid for Domestic Applications
16
作者 Benard Ogembo Paul Njogu Francis Ochieng 《Energy and Power Engineering》 2023年第6期229-240,共12页
The present work dealt with the generation, purifying and liquefaction of biomethane to improve energy density using local materials for domestic applications. Cow dung was sourced at JKUAT dairy farm and experiments ... The present work dealt with the generation, purifying and liquefaction of biomethane to improve energy density using local materials for domestic applications. Cow dung was sourced at JKUAT dairy farm and experiments were conducted at JKUAT Bioenergy laboratory using biogas generated in laboratory scale 1 m<sup>3</sup> bioreactors. Experiments were done in triplicates and repeated under different conditions to get the optimal conditions. The results showed that enhanced cow dung substrate displayed an improved fermentation process with increased biogas yields. Purified biogas optimized methane content from 56% ± 0.18% for raw biogas to 95% ± 0.98% for biomethane which was ideal for liquefaction. 展开更多
关键词 BIOGAS Bio-Methane Catalysis Purification liquefaction BIO-ENERGY KINETICS
下载PDF
Catalytic Hydrothermal Liquefaction of Water Hyacinth Using Fe3O4/NiO Nanocomposite: Optimization of Reaction Conditions by Response Surface Methodology
17
作者 Godwin Aturagaba Dan Egesa +1 位作者 Edward Mubiru Emmanuel Tebandeke 《Journal of Sustainable Bioenergy Systems》 2023年第3期73-98,共26页
This research aimed at optimizing the reaction conditions for the catalytic hydrothermal liquefaction (HTL) of water hyacinth using iron oxide/nickel oxide nanocomposite as catalysts. The iron oxide/nickel oxide nanoc... This research aimed at optimizing the reaction conditions for the catalytic hydrothermal liquefaction (HTL) of water hyacinth using iron oxide/nickel oxide nanocomposite as catalysts. The iron oxide/nickel oxide nanocomposite was synthesized by the co-precipitation method and used in the hydrothermal liquefaction of water hyacinth. The composition and structural morphology of the synthesized catalysts were determined using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic absorption spectroscopy (AAS). The particle size distribution of the catalyst nanoparticles was determined by the Image J software. Three reaction parameters were optimized using the response surface methodology (RSM). These were: temperature, residence time, and catalyst dosage. A maximum bio-oil yield of 59.4 wt% was obtained using iron oxide/nickel oxide nanocomposite compared to 50.7 wt% obtained in absence of the catalyst. The maximum bio-oil yield was obtained at a temperature of 320°C, 1.5 g of catalyst dosage, and 60 min of residence time. The composition of bio-oil was analyzed using gas chromatography-mass spectroscopy (GC-MS) and elemental analysis. The GC-MS results showed an increase of hydrocarbons from 58.3% for uncatalyzed hydrothermal liquefaction to 88.66% using iron oxide/nickel oxide nanocomposite. Elemental analysis results revealed an increase in the hydrogen and carbon content and a reduction in the Nitrogen, Oxygen, and Sulphur content of the bio-oil during catalytic HTL compared to HTL in absence of catalyst nanoparticles. The high heating value increased from 33.5 MJ/Kg for uncatalyzed hydrothermal liquefaction to 38.6 MJ/Kg during the catalytic HTL. The catalyst nanoparticles were recovered from the solid residue by sonication and magnetic separation and recycled. The recycled catalyst nanoparticles were still efficient as hydrothermal liquefaction (HTL) catalysts and were recycled four times. The application of iron oxide/ nickel oxide nanocomposites in the HTL of water hyacinth increases the yield of bio-oil and improves its quality by reducing hetero atoms thus increasing its energy performance as fuel. Iron oxide/nickel oxide nanocomposites used in this study are widely available and can be easily recovered magnetically and recycled. This will potentially lead to an economical, environmentally friendly, and sustainable way of converting biomass into biofuel. 展开更多
关键词 Catalytic Hydrothermal liquefaction Water Hyacinth BIO-OIL Central Com-posite Design Response Surface Methodology OPTIMIZATION
下载PDF
Influence of artificial freezing onliquefaction characteristics of Nanjing sand
18
作者 Jie Zhou Zeyao Li +1 位作者 Wanjun Tian Jiawei Sun 《Railway Sciences》 2023年第1期13-32,共20页
Purpose–This study purposes to study the influence of artificial freezing on the liquefaction characteristics of Nanjing sand,as well as its mechanism.Design/methodology/approach–was studied through dynamic triaxial... Purpose–This study purposes to study the influence of artificial freezing on the liquefaction characteristics of Nanjing sand,as well as its mechanism.Design/methodology/approach–was studied through dynamic triaxial tests by means of the GDS dynamic triaxial system on Nanjing sand extensively discovered in the middle and lower reaches of the Yangtze River under seismic load and metro train vibration load,respectively,and potential hazards of the two loads to the freezing construction of Nanjing sand were also identified in the tests.Findings–The results show that under both seismic load and metro train vibration load,freeze-thaw cycles will significantly reduce the stiffness and liquefaction resistance of Nanjing sand,especially in the first freezethaw cycle;the more freeze-thaw cycles,the worse structural behaviors of silty-fine sand,and the easier to liquefy;freeze-thaw cycles will increase the sensitivity of Nanjing sand’s dynamic pore pressure to dynamic load response;the lower the freezing temperature and the effective confining pressure,the worse the liquefaction resistance of Nanjing sand after freeze-thaw cycles;compared to the metro train vibration load,the seismic load in Nanjing is potentially less dangerous to freezing construction of Nanjing sand.Originality/value–The research results are helpful to the construction of the artificial ground freezing of the subway crossing passage in the lower reaches of the Yangtze River and to ensure the construction safety of the subway tunnel and its crossing passage. 展开更多
关键词 METRO FOUNDATION Nanjing sand Artificial formation freezing method Sand liquefaction Dynamic triaxial test
下载PDF
Comparison of Vs and SPT Soil Liquefaction Assessments of NCEER: Including Hypothesis Testing
19
作者 Min-Hao Wu Jui-Pin Wang Chih-Kun Liao 《International Journal of Geosciences》 2023年第11期1085-1099,共15页
Soil liquefaction is one of the complex research topics in geotechnical engineering and engineering geology. Especially after the 1964 Niigata earthquake (Japan) induced many soil liquefaction incidents, a variety of ... Soil liquefaction is one of the complex research topics in geotechnical engineering and engineering geology. Especially after the 1964 Niigata earthquake (Japan) induced many soil liquefaction incidents, a variety of soil liquefaction studies were conducted and reported, including the liquefaction potential assessment methods utilizing the shear wave velocity (V<sub>s</sub>) or SPT-N profiles (SPT: standard penetration test). This study used the V<sub>s</sub> and SPT methods recommended by the National Center for Earthquake Engineering Research (NCEER) to examine which is more conservative according to the assessment results on 41 liquefiable soil layers at sites in two major cities in Taiwan. Statistical hypothesis testing was used to make the analysis more quantitative and objective. Based on three sets of hypothesis tests, it shows that the hypothesis—the SPT method is more conservative than the V<sub>s</sub> method—was not rejected on a 5% level of significance. 展开更多
关键词 Soil liquefaction Standard Penetration Test Shear Wave Velocity Hypothesis Testing
下载PDF
The Hidden Earthquake Induced Liquefaction Risks in the Rohingya Refugee Camp Hills & Surrounding Areas of Ukhiya, Cox’s Bazar, Bangladesh—A Geotechnical Engineering Approach
20
作者 Abu Taher Mohammad Shakhawat Hossain Md. Shakil Mahabub +7 位作者 Tanmoy Dutta Mahmuda Khatun Toru Terao Md. Hasan Imam Hossain Md Sayem Md. Emdadul Haque Purba Anindita Khan Sheikh Jafia Jafrin 《Open Journal of Earthquake Research》 2023年第3期114-138,共25页
Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismical... Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismically prone area can significantly reduce the loss of lives and damage to civil infrastructures. This research is mainly focused on the earthquake-induced liquefaction risk assessment based on Liquefaction Potential Index (LPI) values at different earthquake magnitudes (M = 5.0, 7.0 and 8.0) with a peak ground acceleration (a<sub>max</sub>) of 0.28 g in the Rohingya Refugee camp and surrounding areas of Ukhiya, Cox’s Bazar, Bangladesh. Standard Penetration Test (SPT) results have been evaluated for potential liquefaction assessment. The soils are mainly composed of very loose to loose sands with some silts and clays. Geotechnical properties of these very loose sandy soils are very much consistent with the criteria of liquefiable soil. It is established from the grain size analysis results;the soil of the study area is mainly sand dominated (SP) with some silty clay (SC) which consists of 93.68% to 99.48% sand, 0.06% to 4.71% gravel and 0% to 6.26% silt and clay. Some Clayey Sand (SC) is also present. The silty clay can be characterized as medium (CI) to high plasticity (CH) inorganic clay soil. LPI values have been calculated to identify risk zones and to prepare risk maps of the investigated area. Based on these obtained LPI values, four (4) susceptible liquefaction risk zones are identified as low, medium, high and very high. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of seismic hazards in the investigated area. 展开更多
关键词 EARTHQUAKE MAGNITUDE Factor of Safety (Fs) liquefaction Potential Index (LPI) & Risk
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部