A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silic...A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silicon was adopted to facilitate heat transfer. Moreover, high resistance or even insulation of CPCM is capable of preventing short circuits between the cells. The heat transfer mechanism of CPCMs was determined under a scanning electron microscope. A thermogravimetric analyzer was employed to determine the thermal stability. A diff erential scanning calorimeter was used to explore the thermophysical properties of the composite samples. By comparing the results of the experiment, it was reported that under the silicon carbide content of 5%, the parameters were better than others. The phase-change enthalpy of CPCM was 199.4 J/g, the leakage rate of liquid was 4.6%, and the melting point was 53.6℃. To verify the practicality of CPCM, a three-dimensional layered battery pack model was built in the COMSOL Multiphysics software. By simulating the thermal runaway inside the battery packs of various materials, it was reported that the addition of CPCM significantly narrowed the temperature range of the battery pack from 300–370 to 303–304 K. Therefore, CPCM can eff ectively increase the rate of heat transfer to prevent the chain of thermal runaway reactions. It also enables the battery pack to run at a stable temperature.展开更多
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
With the increasing attention paid to battery technology,the microscopic reaction mechanism and macroscopic heat transfer process of lithium-ion batteries have been further studied and understood from both academic an...With the increasing attention paid to battery technology,the microscopic reaction mechanism and macroscopic heat transfer process of lithium-ion batteries have been further studied and understood from both academic and industrial perspectives.Temperature,as one of the key parameters in the physical fra mework of batteries,affects the performa nce of the multi-physical fields within the battery,a nd its effective control is crucial.Since the heat generation in the battery is determined by the real-time operating conditions,the battery temperature is essentially controlled by the real-time heat dissipation conditions provided by the battery thermal management system.Conventional battery thermal management systems have basic temperature control capabilities for most conventional application scenarios.However,with the current development of la rge-scale,integrated,and intelligent battery technology,the adva ncement of battery thermal management technology will pay more attention to the effective control of battery temperature under sophisticated situations,such as high power and widely varied operating conditions.In this context,this paper presents the latest advances and representative research related to battery thermal management system.Firstly,starting from battery thermal profile,the mechanism of battery heat generation is discussed in detail.Secondly,the static characteristics of the traditional battery thermal management system are summarized.Then,considering the dynamic requirements of battery heat dissipation under complex operating conditions,the concept of adaptive battery thermal management system is proposed based on specific research cases.Finally,the main challenges for battery thermal management system in practice are identified,and potential future developments to overcome these challenges are presented and discussed.展开更多
With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat tr...With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.展开更多
Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offe...Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and recycling.Firstly,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening efficiency.Secondly,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic issues.In the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery technologies.Particularly,we introduce several global leading recyclers to illustrate their industrial processes and technical intricacies.Furthermore,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal framework.We hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices.展开更多
Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charg...Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems.展开更多
This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under dif...This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under different degradation paths,the evolution trend of temperature rise rate remains unchanged with respect to depth of discharge during the adiabatic discharge process,albeit to varying degrees of alteration.The temperature rise rate changes significantly with aging during the adiabatic discharge process under low-temperature cycling and high-rate cycling paths.The total heat generation rate,irreversible heat generation rate,and reversible heat generation rate exhibit similar evolution behavior with aging under different degradation paths.The interval range of endothermic process of reversible electrochemical reactions increases and the contribution of irreversible heat to the total heat increases with aging.To further standardize the assessment of different degradation paths on the thermal characteristics,this work introduces the innovative concept of“Ampere-hour temperature rise”.In low-temperature cycling and high-rate cycling paths,the ampere-hour temperature rise increases significantly with aging,particularly accentuated with higher discharge rates.Conversely,in high-temperature cycling and high-temperature storage paths,the ampere-hour temperature rise remains relatively stable during the initial stages of aging,yet undergoes a notable increase in the later stages of aging.The multi-angle characterization reveals distinct thermal evolution behavior under different degradation paths primarily attributed to different behavior changes of severe side reactions,such as lithium plating.The findings provide crucial insights for the safe utilization and management of lithium–ion batteries throughout the whole lifecycle.展开更多
The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pac...The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%.展开更多
The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning...The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods.展开更多
An electrochemical thermal coupling model of lithium battery was established to study the heat generation characteristic in this study.The simulation results showed that the heat generation density of the battery incr...An electrochemical thermal coupling model of lithium battery was established to study the heat generation characteristic in this study.The simulation results showed that the heat generation density of the battery increased with the discharge rate.With the discharge process,the heat generation density of the battery increased continuously.With 2.5C discharge rate,the heat generation density at the end of discharge was 1.82 times of that at the beginning of discharge.The heat generation density at different areas of the battery was not uniform and 46%of the total ohmic heat was generated near the electrode tabs.A cooling plate with variable mini-channels was designed to improve the temperature non-uniformity caused by the heat generation characteristic.A cooling plate with uniform mini-channels was designed for compared experiment.The experiments were conducted with deionized water and refrigerant R141b and carried out with 1.5C,2C and 2.5C discharge rates.Experimental results showed that the cooling plate with variable mini-channels had a better cooling performance in both single-phase and two-phase cooling conditions.展开更多
Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flo...Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics(CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.展开更多
Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a m...Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs.展开更多
This paper discusses an improved thermal management system to ameliorate the performance of lithium-ion battery storage systems for electric vehicles(EVs) applications. A compact and lightweight cold plate is designed...This paper discusses an improved thermal management system to ameliorate the performance of lithium-ion battery storage systems for electric vehicles(EVs) applications. A compact and lightweight cold plate is designed and fabricated to fit 18650-type lithium-ion batteries, using aluminum-finned copper tubes. A dynamic temperature PID(proportional, integral, differential) control algorithm for electronic expansion valves is developed to study using EV air conditioning refrigerant, R134a, to control battery modules’ temperature with this compact and lightweight thermal management system. The experimental results show that the proposed battery thermal management system can effectively control the battery module’s temperature. In addition, during 1C discharge, when the PID temperature algorithm control scheme is used, the maximum temperature difference across the battery module peaks at less than 4℃, and the maximum temperature within the battery module is less than 36℃.展开更多
Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propaga...Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design.展开更多
Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates...Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates the thermal safety evolution mechanism of lithium-ion batteries during high-temperature aging.Similarities arise in the thermal safety evolution and degradation mechanisms for lithium-ion batteries undergoing cyclic aging and calendar aging.Employing multi-angle characterization analysis,the intricate mechanism governing the thermal safety evolution of lithium-ion batteries during high-temperature aging is clarified.Specifically,lithium plating serves as the pivotal factor contributing to the reduction in the self-heating initial temperature.Additionally,the crystal structure of the cathode induced by the dissolution of transition metals and the reductive gas generated during aging attacking the crystal structure of the cathode lead to a decrease in thermal runaway triggering temperature.Furthermore,the loss of active materials and active lithium during aging contributes to a decline in both the maximum temperature and the maximum temperature rise rate,ultimately indicating a decrease in the thermal hazards of aging batteries.展开更多
Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance ...Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research.展开更多
Lithium-ion batteries(LIBs)play a pivotal role in today's society,with widespread applications in portable electronics,electric vehicles,and smart grids.Commercial LIBs predominantly utilize graphite anodes due to...Lithium-ion batteries(LIBs)play a pivotal role in today's society,with widespread applications in portable electronics,electric vehicles,and smart grids.Commercial LIBs predominantly utilize graphite anodes due to their high energy density and cost-effectiveness.Graphite anodes face challenges,however,in extreme safety-demanding situations,such as airplanes and passenger ships.The lithiation of graphite can potentially form lithium dendrites at low temperatures,causing short circuits.Additionally,the dissolution of the solid-electrolyte-interphase on graphite surfaces at high temperatures can lead to intense reactions with the electrolyte,initiating thermal runaway.This review introduces two promising high-safety anode materials,Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7).Both materials exhibit low tendencies towards lithium dendrite formation and have high onset temperatures for reactions with the electrolyte,resulting in reduced heat generation and significantly lower probabilities of thermal runaway.Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7)offer enhanced safety characteristics compared to graphite,making them suitable for applications with stringent safety requirements.This review provides a comprehensive overview of Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7),focusing on their material properties and practical applicability.It aims to contribute to the understanding and development of high-safety anode materials for advanced LIBs,addressing the challenges and opportunities associated with their implementation in real-world applications.展开更多
Prognostics and health management(PHM)has gotten considerable attention in the background of Industry 4.0.Battery PHM contributes to the reliable and safe operation of electric devices.Nevertheless,relevant reviews ar...Prognostics and health management(PHM)has gotten considerable attention in the background of Industry 4.0.Battery PHM contributes to the reliable and safe operation of electric devices.Nevertheless,relevant reviews are still continuously updated over time.In this paper,we browsed extensive literature related to battery PHM from 2018to 2023 and summarized advances in battery PHM field,including battery testing and public datasets,fault diagnosis and prediction methods,health status estimation and health management methods.The last topic includes state of health estimation methods,remaining useful life prediction methods and predictive maintenance methods.Each of these categories is introduced and discussed in details.Based on this survey,we accordingly discuss challenges left to battery PHM,and provide future research opportunities.This research systematically reviews recent research about battery PHM from the perspective of key PHM steps and provide some valuable prospects for researchers and practitioners.展开更多
Fluorinated electrolytes possess good antioxidant capacity that provides high compatibility to high-voltage cathode and flame retardance;thus,they are considered as a promising solution for advanced lithium-ion batter...Fluorinated electrolytes possess good antioxidant capacity that provides high compatibility to high-voltage cathode and flame retardance;thus,they are considered as a promising solution for advanced lithium-ion batteries carrying both high-energy density and high safety.Moreover,the fluorinated electrolytes are widely used to form stable electrolyte interphase,due to their chemical reactivity with lithiated graphite or lithium.However,the influence of this reactivity on the thermal safety of batteries is seldom discussed.Herein,we demonstrate that the flame-retardant fluorinated electrolytes help to reduce the flammability,while the lithium-ion batteries with flame-retardant fluorinated electrolytes still undergo thermal runaway and disclose their different thermal runaway pathway from that of battery with conventional electrolyte.The reduction in fluorinated components(e.g.,LiPF 6 and fluoroethylene carbonate(FEC))by fully lithiated graphite accounts for a significant heat release during battery thermal runaway.The 13%of total heat is sufficient to trigger the chain reactions during battery thermal runaway.This study deepens the understanding of the thermal runaway mechanism of lithium-ion batteries employing flame-retardant fluorinated electrolytes,providing guidance on the concept of electrolyte design for safer lithium-ion batteries.展开更多
Transportation electrification is essential for decarbonizing transport. Currently, lithium-ion batteries are the primary power source for electric vehicles (EVs). However, there is still a significant journey ahead b...Transportation electrification is essential for decarbonizing transport. Currently, lithium-ion batteries are the primary power source for electric vehicles (EVs). However, there is still a significant journey ahead before EVs can establish themselves as the dominant force in the global automotive market. Concerns such as range anxiety, battery aging, and safety issues remain significant challenges.展开更多
基金supported by the National Key Research and Development Projects(No.2018YFC0808600)。
文摘A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silicon was adopted to facilitate heat transfer. Moreover, high resistance or even insulation of CPCM is capable of preventing short circuits between the cells. The heat transfer mechanism of CPCMs was determined under a scanning electron microscope. A thermogravimetric analyzer was employed to determine the thermal stability. A diff erential scanning calorimeter was used to explore the thermophysical properties of the composite samples. By comparing the results of the experiment, it was reported that under the silicon carbide content of 5%, the parameters were better than others. The phase-change enthalpy of CPCM was 199.4 J/g, the leakage rate of liquid was 4.6%, and the melting point was 53.6℃. To verify the practicality of CPCM, a three-dimensional layered battery pack model was built in the COMSOL Multiphysics software. By simulating the thermal runaway inside the battery packs of various materials, it was reported that the addition of CPCM significantly narrowed the temperature range of the battery pack from 300–370 to 303–304 K. Therefore, CPCM can eff ectively increase the rate of heat transfer to prevent the chain of thermal runaway reactions. It also enables the battery pack to run at a stable temperature.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
基金supported by the National Natural Science Foundation of China (No.62373224,62333013,and U23A20327)。
文摘With the increasing attention paid to battery technology,the microscopic reaction mechanism and macroscopic heat transfer process of lithium-ion batteries have been further studied and understood from both academic and industrial perspectives.Temperature,as one of the key parameters in the physical fra mework of batteries,affects the performa nce of the multi-physical fields within the battery,a nd its effective control is crucial.Since the heat generation in the battery is determined by the real-time operating conditions,the battery temperature is essentially controlled by the real-time heat dissipation conditions provided by the battery thermal management system.Conventional battery thermal management systems have basic temperature control capabilities for most conventional application scenarios.However,with the current development of la rge-scale,integrated,and intelligent battery technology,the adva ncement of battery thermal management technology will pay more attention to the effective control of battery temperature under sophisticated situations,such as high power and widely varied operating conditions.In this context,this paper presents the latest advances and representative research related to battery thermal management system.Firstly,starting from battery thermal profile,the mechanism of battery heat generation is discussed in detail.Secondly,the static characteristics of the traditional battery thermal management system are summarized.Then,considering the dynamic requirements of battery heat dissipation under complex operating conditions,the concept of adaptive battery thermal management system is proposed based on specific research cases.Finally,the main challenges for battery thermal management system in practice are identified,and potential future developments to overcome these challenges are presented and discussed.
基金supported by the National Natural Science Foundation of China(Grant No.52271320)"Mechanics+"interdisciplinary innovation youth fund project of Ningbo University(LJ2023005).
文摘With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.
基金supported by an Australian Government Research Training Program Scholarship offered to the first author of this study。
文摘Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and recycling.Firstly,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening efficiency.Secondly,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic issues.In the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery technologies.Particularly,we introduce several global leading recyclers to illustrate their industrial processes and technical intricacies.Furthermore,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal framework.We hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices.
基金supported by the National Natural Science Foundation of China(No.U20A20310 and No.52176199)sponsored by the Program of Shanghai Academic/Technology Research Leader(No.22XD1423800)。
文摘Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems.
基金This work is supported by the National Natural Science Foundation of China(NSFC,Nos.52176199,and U20A20310)supported by the Program of Shanghai Academic/Technology Research Leader(22XD1423800).
文摘This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under different degradation paths,the evolution trend of temperature rise rate remains unchanged with respect to depth of discharge during the adiabatic discharge process,albeit to varying degrees of alteration.The temperature rise rate changes significantly with aging during the adiabatic discharge process under low-temperature cycling and high-rate cycling paths.The total heat generation rate,irreversible heat generation rate,and reversible heat generation rate exhibit similar evolution behavior with aging under different degradation paths.The interval range of endothermic process of reversible electrochemical reactions increases and the contribution of irreversible heat to the total heat increases with aging.To further standardize the assessment of different degradation paths on the thermal characteristics,this work introduces the innovative concept of“Ampere-hour temperature rise”.In low-temperature cycling and high-rate cycling paths,the ampere-hour temperature rise increases significantly with aging,particularly accentuated with higher discharge rates.Conversely,in high-temperature cycling and high-temperature storage paths,the ampere-hour temperature rise remains relatively stable during the initial stages of aging,yet undergoes a notable increase in the later stages of aging.The multi-angle characterization reveals distinct thermal evolution behavior under different degradation paths primarily attributed to different behavior changes of severe side reactions,such as lithium plating.The findings provide crucial insights for the safe utilization and management of lithium–ion batteries throughout the whole lifecycle.
基金support provided National Natural Science Foundation of China with Grant No.51976016Natural Science Foundation of Hunan Province,China with Grant No.2020JJ4616Research Foundation of Education Bureau of Hunan Province(18B149).
文摘The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%.
基金National Natural Science Foundation of China(Nos.61772130 and 62072096)Fundamental Research Funds for the Central Universities+2 种基金China(No.2232020A-12)International Cooperation Program of Shanghai Science and Technology Commission,China(No.20220713000)Young Top-Notch Talent Program in Shanghai,China。
文摘The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods.
基金supported by the National Key R&D Program of China(2019YFE0104900)。
文摘An electrochemical thermal coupling model of lithium battery was established to study the heat generation characteristic in this study.The simulation results showed that the heat generation density of the battery increased with the discharge rate.With the discharge process,the heat generation density of the battery increased continuously.With 2.5C discharge rate,the heat generation density at the end of discharge was 1.82 times of that at the beginning of discharge.The heat generation density at different areas of the battery was not uniform and 46%of the total ohmic heat was generated near the electrode tabs.A cooling plate with variable mini-channels was designed to improve the temperature non-uniformity caused by the heat generation characteristic.A cooling plate with uniform mini-channels was designed for compared experiment.The experiments were conducted with deionized water and refrigerant R141b and carried out with 1.5C,2C and 2.5C discharge rates.Experimental results showed that the cooling plate with variable mini-channels had a better cooling performance in both single-phase and two-phase cooling conditions.
基金Project(50803008)supported by the National Natural Science Foundation of ChinaProjects(14JJ4035,2011RS4067)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2013-sdllmd-08)supported by the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology),ChinaProjects(20100480946,201104508)supported by the China Postdoctoral Science Foundation,China
文摘Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics(CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 91834301 and 22078088)the National Natural Science Foundation of China for Innovative Research Groups (Grant No. 51621002)the Shanghai Rising-Star Program (Grant No. 21QA1401900)。
文摘Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs.
基金received from the China National Key R&D Project(2018YFB0905303)the Guangdong Science and Technology Department(2017B010120003,2015A030308019,2016A030313172)the Guangzhou Scientific and Technological Development Plan(201804020020)。
文摘This paper discusses an improved thermal management system to ameliorate the performance of lithium-ion battery storage systems for electric vehicles(EVs) applications. A compact and lightweight cold plate is designed and fabricated to fit 18650-type lithium-ion batteries, using aluminum-finned copper tubes. A dynamic temperature PID(proportional, integral, differential) control algorithm for electronic expansion valves is developed to study using EV air conditioning refrigerant, R134a, to control battery modules’ temperature with this compact and lightweight thermal management system. The experimental results show that the proposed battery thermal management system can effectively control the battery module’s temperature. In addition, during 1C discharge, when the PID temperature algorithm control scheme is used, the maximum temperature difference across the battery module peaks at less than 4℃, and the maximum temperature within the battery module is less than 36℃.
基金supported by the National Key R&D Program-Strategic Scientific and Technological Innovation Cooperation(Grant No.2022YFE0207900)the National Natural Science Foundation of China(Grant Nos.51706117,52076121)。
文摘Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.52176199,and U20A20310)supported by the Program of Shanghai Academic/Technology Research Leader(22XD1423800)。
文摘Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates the thermal safety evolution mechanism of lithium-ion batteries during high-temperature aging.Similarities arise in the thermal safety evolution and degradation mechanisms for lithium-ion batteries undergoing cyclic aging and calendar aging.Employing multi-angle characterization analysis,the intricate mechanism governing the thermal safety evolution of lithium-ion batteries during high-temperature aging is clarified.Specifically,lithium plating serves as the pivotal factor contributing to the reduction in the self-heating initial temperature.Additionally,the crystal structure of the cathode induced by the dissolution of transition metals and the reductive gas generated during aging attacking the crystal structure of the cathode lead to a decrease in thermal runaway triggering temperature.Furthermore,the loss of active materials and active lithium during aging contributes to a decline in both the maximum temperature and the maximum temperature rise rate,ultimately indicating a decrease in the thermal hazards of aging batteries.
基金supported by the National Natural Science Foundation of China (No.62173281,52377217,U23A20651)Sichuan Science and Technology Program (No.24NSFSC0024,23ZDYF0734,23NSFSC1436)+2 种基金Dazhou City School Cooperation Project (No.DZXQHZ006)Technopole Talent Summit Project (No.KJCRCFH08)Robert Gordon University。
文摘Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research.
基金financially supported by an Australian Research Council(ARC)Discovery Project(DP180101453)an Australian Renewable Energy Agency(ARENA)Project(G00849)+1 种基金the 2021 Ludo Frevel Crystal ography Scholarship Awardan AINSE Ltd.Postgraduate Research Award(PGRA)
文摘Lithium-ion batteries(LIBs)play a pivotal role in today's society,with widespread applications in portable electronics,electric vehicles,and smart grids.Commercial LIBs predominantly utilize graphite anodes due to their high energy density and cost-effectiveness.Graphite anodes face challenges,however,in extreme safety-demanding situations,such as airplanes and passenger ships.The lithiation of graphite can potentially form lithium dendrites at low temperatures,causing short circuits.Additionally,the dissolution of the solid-electrolyte-interphase on graphite surfaces at high temperatures can lead to intense reactions with the electrolyte,initiating thermal runaway.This review introduces two promising high-safety anode materials,Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7).Both materials exhibit low tendencies towards lithium dendrite formation and have high onset temperatures for reactions with the electrolyte,resulting in reduced heat generation and significantly lower probabilities of thermal runaway.Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7)offer enhanced safety characteristics compared to graphite,making them suitable for applications with stringent safety requirements.This review provides a comprehensive overview of Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7),focusing on their material properties and practical applicability.It aims to contribute to the understanding and development of high-safety anode materials for advanced LIBs,addressing the challenges and opportunities associated with their implementation in real-world applications.
基金Supported by Tianjin Municipal Education Commission of China (Grant No. 2023KJ303)National Natural Science Foundation of China (Grant Nos. 12121002, 51975355)
文摘Prognostics and health management(PHM)has gotten considerable attention in the background of Industry 4.0.Battery PHM contributes to the reliable and safe operation of electric devices.Nevertheless,relevant reviews are still continuously updated over time.In this paper,we browsed extensive literature related to battery PHM from 2018to 2023 and summarized advances in battery PHM field,including battery testing and public datasets,fault diagnosis and prediction methods,health status estimation and health management methods.The last topic includes state of health estimation methods,remaining useful life prediction methods and predictive maintenance methods.Each of these categories is introduced and discussed in details.Based on this survey,we accordingly discuss challenges left to battery PHM,and provide future research opportunities.This research systematically reviews recent research about battery PHM from the perspective of key PHM steps and provide some valuable prospects for researchers and practitioners.
基金This work is funded by National Natural Science Foundation of China(Grant No.52006115)Ministry of Science and Technology of China(Grant No.2019YFE0100200)+3 种基金National Natural Science Foundation of China(Grant No.52076121)China National Postdoctoral Program for Innovative Talents(Grant No.BX20190162)China Postdoctoral Science Foundation(Grant No.2019M660631)the Tsinghua University Initiative Scientific Research Program(Grant No.2019Z02UTY06).
文摘Fluorinated electrolytes possess good antioxidant capacity that provides high compatibility to high-voltage cathode and flame retardance;thus,they are considered as a promising solution for advanced lithium-ion batteries carrying both high-energy density and high safety.Moreover,the fluorinated electrolytes are widely used to form stable electrolyte interphase,due to their chemical reactivity with lithiated graphite or lithium.However,the influence of this reactivity on the thermal safety of batteries is seldom discussed.Herein,we demonstrate that the flame-retardant fluorinated electrolytes help to reduce the flammability,while the lithium-ion batteries with flame-retardant fluorinated electrolytes still undergo thermal runaway and disclose their different thermal runaway pathway from that of battery with conventional electrolyte.The reduction in fluorinated components(e.g.,LiPF 6 and fluoroethylene carbonate(FEC))by fully lithiated graphite accounts for a significant heat release during battery thermal runaway.The 13%of total heat is sufficient to trigger the chain reactions during battery thermal runaway.This study deepens the understanding of the thermal runaway mechanism of lithium-ion batteries employing flame-retardant fluorinated electrolytes,providing guidance on the concept of electrolyte design for safer lithium-ion batteries.
文摘Transportation electrification is essential for decarbonizing transport. Currently, lithium-ion batteries are the primary power source for electric vehicles (EVs). However, there is still a significant journey ahead before EVs can establish themselves as the dominant force in the global automotive market. Concerns such as range anxiety, battery aging, and safety issues remain significant challenges.