期刊文献+
共找到1,040篇文章
< 1 2 52 >
每页显示 20 50 100
Classification of Gastric Lesions Using Gabor Block Local Binary Patterns
1
作者 Muhammad Tahir Farhan Riaz +1 位作者 Imran Usman Mohamed Ibrahim Habib 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期4007-4022,共16页
The identification of cancer tissues in Gastroenterology imaging poses novel challenges to the computer vision community in designing generic decision support systems.This generic nature demands the image descriptors ... The identification of cancer tissues in Gastroenterology imaging poses novel challenges to the computer vision community in designing generic decision support systems.This generic nature demands the image descriptors to be invariant to illumination gradients,scaling,homogeneous illumination,and rotation.In this article,we devise a novel feature extraction methodology,which explores the effectiveness of Gabor filters coupled with Block Local Binary Patterns in designing such descriptors.We effectively exploit the illumination invariance properties of Block Local Binary Patterns and the inherent capability of convolutional neural networks to construct novel rotation,scale and illumination invariant features.The invariance characteristics of the proposed Gabor Block Local Binary Patterns(GBLBP)are demonstrated using a publicly available texture dataset.We use the proposed feature extraction methodology to extract texture features from Chromoendoscopy(CH)images for the classification of cancer lesions.The proposed feature set is later used in conjuncture with convolutional neural networks to classify the CH images.The proposed convolutional neural network is a shallow network comprising of fewer parameters in contrast to other state-of-the-art networks exhibiting millions of parameters required for effective training.The obtained results reveal that the proposed GBLBP performs favorably to several other state-of-the-art methods including both hand crafted and convolutional neural networks-based features. 展开更多
关键词 Texture analysis Gabor filters gastroenterology imaging convolutional neural networks block local binary patterns
下载PDF
基于LBP和注意力机制的改进VGG网络的人脸表情识别方法 被引量:1
2
作者 张中华 杨慧炯 《软件工程》 2024年第1期23-26,31,共5页
为了提高训练速度和人脸表情识别效果,提出一种基于局部二值模式(Local Binary Pattern,LBP)和注意力机制的改进视觉几何群网络(Visual Geometry Group Network,VGG网络)的人脸表情识别方法。首先,通过LBP获取数据集的纹理特征。其次,... 为了提高训练速度和人脸表情识别效果,提出一种基于局部二值模式(Local Binary Pattern,LBP)和注意力机制的改进视觉几何群网络(Visual Geometry Group Network,VGG网络)的人脸表情识别方法。首先,通过LBP获取数据集的纹理特征。其次,利用全局平均池化层代替全连接层,并在基准模型卷积层后和全局平均池化层前引入注意力模块,创建新网络模型NEW-VGG;通过对NEW-VGG做消融实验,验证模型改进的正确性。最后,融合LBP+NEW-VGG模型对CK+和Fer2013两种数据集进行10倍交叉验证,取得了97.98%和76.75%的识别率。实验结果表明,该方法不仅能加快网络训练迭代速度,增强人脸表情识别效果,还具有较强的鲁棒性。 展开更多
关键词 面部表情识别 局部二值模式 注意力机制
下载PDF
Vehicle detection algorithm based on codebook and local binary patterns algorithms 被引量:1
3
作者 许雪梅 周立超 +1 位作者 墨芹 郭巧云 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期593-600,共8页
Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establis... Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establish a suitable background model for the moving vehicles. In order to solve this problem, the Gaussian pyramid layered algorithm is proposed, combining with the advantages of the Codebook algorithm and the Local binary patterns(LBP) algorithm. Firstly, the image pyramid is established to eliminate the noises generated by the camera shake. Then, codebook model and LBP model are constructed on the low-resolution level and the high-resolution level of Gaussian pyramid, respectively. At last, the final test results are obtained through a set of operations according to the spatial relations of pixels. The experimental results show that this algorithm can not only eliminate the noises effectively, but also save the calculating time with high detection sensitivity and high detection accuracy. 展开更多
关键词 background modeling Gaussian pyramid CODEBOOK local binary patterns(lbp moving vehicle detection
下载PDF
Local binary pattern-based reversible data hiding 被引量:4
4
作者 Monalisa Sahu Neelamadhab Padhy +1 位作者 Sasanko Sekhar Gantayat Aditya Kumar Sahu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第4期695-709,共15页
A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided ... A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided into various 3×3 blocks.Then,using the LBP-based image descriptor,the LBP codes for each block are computed.Next,the obtained LBP codes are XORed with the embedding bits and are concealed in the respective blocks using the proposed pixel readjustment process.Further,each cover image(CI)pixel produces two different stego-image pixels.Likewise,during extraction,the CI pixels are restored without the loss of a single bit of information.The outcome of the proposed technique with respect to perceptual transparency measures,such as peak signal-to-noise ratio and structural similarity index,is found to be superior to that of some of the recent and state-of-the-art techniques.In addition,the proposed technique has shown excellent resilience to various stego-attacks,such as pixel difference histogram as well as regular and singular analysis.Besides,the out-off boundary pixel problem,which endures in most of the contemporary data hiding techniques,has been successfully addressed. 展开更多
关键词 hiding capacity(HC) local binary pattern(lbp) peak signal-to-noise ratio(PSNR) reversible data hiding
下载PDF
A Novel Tracking-by-Detection Method with Local Binary Pattern and Kalman Filter 被引量:1
5
作者 Zhongli Wang Chunxiao Jia +6 位作者 Baigen Cai Litong Fan Chuanqi Tao Zhiyi Zhang Yinling Wang Min Zhang Guoyan Lyu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第3期74-87,共14页
Tracking-Learning-Detection( TLD) is an adaptive tracking algorithm,which tracks by learning the appearance of the object as the video progresses and shows a good performance in long-term tracking task.But our experim... Tracking-Learning-Detection( TLD) is an adaptive tracking algorithm,which tracks by learning the appearance of the object as the video progresses and shows a good performance in long-term tracking task.But our experiments show that under some scenarios,such as non-uniform illumination changing,serious occlusion,or motion-blurred,it may fails to track the object. In this paper,to surmount some of these shortages,especially for the non-uniform illumination changing,and give full play to the performance of the tracking-learning-detection framework, we integrate the local binary pattern( LBP) with the cascade classifiers,and define a new classifier named ULBP( Uniform Local Binary Pattern) classifiers. When the object appearance has rich texture features,the ULBP classifier will work instead of the nearest neighbor classifier in TLD algorithm,and a recognition module is designed to choose the suitable classifier between the original nearest neighbor( NN) classifier and the ULBP classifier. To further decrease the computing load of the proposed tracking approach,Kalman filter is applied to predict the searching range of the tracking object.A comprehensive study has been conducted to confirm the effectiveness of the proposed algorithm (TLD _ULBP),and different multi-property datasets were used. The quantitative evaluations show a significant improvement over the original TLD,especially in various lighting case. 展开更多
关键词 Tracking-Learning-Detection (TLD) local binary pattern (lbp) Kalman filter
下载PDF
Defocus Blur Segmentation Using Local Binary Patterns with Adaptive Threshold 被引量:1
6
作者 Usman Ali Muhammad Tariq Mahmood 《Computers, Materials & Continua》 SCIE EI 2022年第4期1597-1611,共15页
Enormousmethods have been proposed for the detection and segmentation of blur and non-blur regions of the images.Due to the limited available information about blur type,scenario and the level of blurriness,detection ... Enormousmethods have been proposed for the detection and segmentation of blur and non-blur regions of the images.Due to the limited available information about blur type,scenario and the level of blurriness,detection and segmentation is a challenging task.Hence,the performance of the blur measure operator is an essential factor and needs improvement to attain perfection.In this paper,we propose an effective blur measure based on local binary pattern(LBP)with adaptive threshold for blur detection.The sharpness metric developed based on LBP used a fixed threshold irrespective of the type and level of blur,that may not be suitable for images with variations in imaging conditions,blur amount and type.Contrarily,the proposed measure uses an adaptive threshold for each input image based on the image and blur properties to generate improved sharpness metric.The adaptive threshold is computed based on the model learned through support vector machine(SVM).The performance of the proposed method is evaluated using two different datasets and is compared with five state-of-the-art methods.Comparative analysis reveals that the proposed method performs significantly better qualitatively and quantitatively against all of the compared methods. 展开更多
关键词 Adaptive threshold blur measure defocus blur segmentation local binary pattern support vector machine
下载PDF
An Improved Real-Time Face Recognition System at Low Resolution Based on Local Binary Pattern Histogram Algorithm and CLAHE 被引量:2
7
作者 Kamal Chandra Paul Semih Aslan 《Optics and Photonics Journal》 2021年第4期63-78,共16页
This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><... This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span> 展开更多
关键词 Face Detection Face Recognition Low Resolution Feature Extraction Security System Access Control System Viola-Jones Algorithm lbpH local binary pattern Histogram
下载PDF
Novel similarity measures for face representation based on local binary pattern
8
作者 祝世虎 封举富 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期223-226,共4页
The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter ... The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter and propose two novel similarity measures for the local matching methods and the holistic matching methods respectively.One is Earth Mover's Distance with Hamming and Lp ground distance(EMD-HammingLp),which is a cross-bin dissimilarity measure for LBP histograms.The other is IMage Hamming Distance(IMHD),which is a dissimilarity measure for the whole LBP images.Experiments on FERET database show that the proposed two similarity measures outperform the state-of-the-art Chi-square similarity measure for extraction of LBP features. 展开更多
关键词 similarity measurement local binary pattern Earth Mover's Distance IMage Euclidean Distance
下载PDF
A Local Binary Pattern-Based Method for Color and Multicomponent Texture Analysis
9
作者 Yao Taky Alvarez Kossonou Alain Clément +1 位作者 Bouchta Sahraoui Jérémie Zoueu 《Journal of Signal and Information Processing》 2020年第3期58-73,共16页
Local Binary Patterns (LBPs) have been highly used in texture classification <span style="font-family:Verdana;">for their robustness, their ease of implementation an</span><span style="fo... Local Binary Patterns (LBPs) have been highly used in texture classification <span style="font-family:Verdana;">for their robustness, their ease of implementation an</span><span style="font-family:Verdana;">d their low computational</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">cost. Initially designed to deal with gray level images, several methods based on them in the literature have been proposed for images having more than one spectral band. To achieve it, whether assumption using color information or combining spectral band two by two was done. Those methods use micro </span><span style="font-family:Verdana;">structures as texture features. In this paper, our goal was to design texture features which are relevant to color and multicomponent texture analysi</span><span style="font-family:Verdana;">s withou</span><span style="font-family:Verdana;">t any assumption.</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Based on methods designed for gray scale images, we find the combination of micro and macro structures efficient for multispectral texture analysis. The experimentations were carried out on color images from Outex databases and multicomponent images from red blood cells captured using a multispectral microscope equipped with 13 LEDs ranging </span><span style="font-family:Verdana;">from 375 nm to 940 nm. In all achieved experimentations, our propos</span><span style="font-family:Verdana;">al presents the best classification scores compared to common multicomponent LBP methods.</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">99.81%, 100.00%,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">99.07% and 97.67% are</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">maximum scores obtained with our strategy respectively applied to images subject to rotation, blur, illumination variation and the multicomponent ones.</span> 展开更多
关键词 Multispectral Images local binary patterns (lbp) Texture Analysis Rotation Invariance Illumination Variation Blurring Invariance
下载PDF
Local Binary Patterns and Its Variants for Finger Knuckle Print Recognition in Multi-Resolution Domain
10
作者 D. R. Arun C. Christopher Columbus K. Meena 《Circuits and Systems》 2016年第10期3142-3149,共8页
Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach... Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach of personal authentication using texture based Finger Knuckle Print (FKP) recognition in multiresolution domain. FKP images are rich in texture patterns. Recently, many texture patterns are proposed for biometric feature extraction. Hence, it is essential to review whether Local Binary Patterns or its variants perform well for FKP recognition. In this paper, Local Directional Pattern (LDP), Local Derivative Ternary Pattern (LDTP) and Local Texture Description Framework based Modified Local Directional Pattern (LTDF_MLDN) based feature extraction in multiresolution domain are experimented with Nearest Neighbor and Extreme Learning Machine (ELM) Classifier for FKP recognition. Experiments were conducted on PolYU database. The result shows that LDTP in Contourlet domain achieves a promising performance. It also proves that Soft classifier performs better than the hard classifier. 展开更多
关键词 Biometrics Finger Knuckle Print Contourlet Transform local binary pattern (lbp) local Directional pattern (LDP) local Derivative Ternary pattern (LDTP) local Texture Description Framework Based Modified local Directional pattern (LTDF_MLDN) Nearest Neighbor (NN) Classifier Extreme Learning Machine (ELM) Classifier
下载PDF
Android Malware Detection Using Local Binary Pattern and Principal Component Analysis
11
作者 Qixin Wu Zheng Qin +3 位作者 Jinxin Zhang Hui Yin Guangyi Yang Kuangsheng Hu 《国际计算机前沿大会会议论文集》 2017年第1期63-66,共4页
Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applicatio... Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applications are increasing rapidly as well,which attracts attention of malware attackers and researchers alike.Due to the endless evolution of the malware,it is critical to apply the analysis methods based on machine learning to detect malwares and stop them from leakaging our privacy information.In this paper,we propose a novel Android malware detection method based on binary texture feature recognition by Local Binary Pattern and Principal Component Analysis,which can visualize malware and detect malware accurately.Also,our method analyzes malware binary directly without any decompiler,sandbox or virtual machines,which avoid time and resource consumption caused by decompiler or monitor in this process.Experimentation on 5127 benigns and 5560 malwares shows that we obtain a detection accuracy of 90%. 展开更多
关键词 ANDROID MALWARE detection binary TEXTURE FEATURE local binary pattern Principal component analysis
下载PDF
结合LBP圆形算子的CNN面部表情识别研究 被引量:1
12
作者 郭玲玲 苏冬娜 胡绍彬 《微型电脑应用》 2023年第2期1-4,共4页
利用机器学习中卷积神经网络(CNN)擅长处理图像的优势,结合改进的局部二值模式(LBP)圆形算子,实现了人脸面部表情的识别。提取的人脸表情特征纹理信息得到增强,抑制了图像中光照、背景等干扰因素,并达到了灰度和旋转不变性的要求。在FER... 利用机器学习中卷积神经网络(CNN)擅长处理图像的优势,结合改进的局部二值模式(LBP)圆形算子,实现了人脸面部表情的识别。提取的人脸表情特征纹理信息得到增强,抑制了图像中光照、背景等干扰因素,并达到了灰度和旋转不变性的要求。在FER2013数据库上的实验结果表明,相比于原始图像的输入,结合LBP圆形算子的CNN结构能够有效提高面部表情识别的准确率。 展开更多
关键词 机器学习 卷积神经网络 局部二值模式 面部表情
下载PDF
基于四叉树的ORB-LBP改进算法
13
作者 陈易文 储开斌 +1 位作者 张继 冯成涛 《传感器与微系统》 CSCD 北大核心 2023年第10期156-159,164,共5页
针对ORB算法存在图像分布不均匀、匹配程度不高、匹配精度差的问题,通过划分网格计算图像灰度值的方法计算角点提取阈值。通过在金字塔层上构建四叉树的方法,在不同金字塔层分别构建不同深度的四叉树以提高计算效率,最后融合BRIEF-LBP... 针对ORB算法存在图像分布不均匀、匹配程度不高、匹配精度差的问题,通过划分网格计算图像灰度值的方法计算角点提取阈值。通过在金字塔层上构建四叉树的方法,在不同金字塔层分别构建不同深度的四叉树以提高计算效率,最后融合BRIEF-LBP特征描述子以提升ORB算法匹配精度。实验结果表明:对比传统ORB算法在速度上降低了5%,但均匀度提升了66左右,召回率也提升了10%;对比其他改进算法,速度提升了2%和5%,特征点分布均匀度提升了48和49,召回率也提升了36.63%和4.925%,实现了在少量增加计算量的同时,特征点均匀度和匹配精度效果有较大提升。 展开更多
关键词 ORB算法 局部二值模式 四叉树 融合描述子
下载PDF
基于LP和LBP的红外与可见光图像融合算法 被引量:1
14
作者 陈芯蕊 郭立强 《淮阴师范学院学报(自然科学版)》 CAS 2023年第3期210-215,共6页
针对传统拉普拉斯金字塔在进行图像融合时出现的细节信息丢失、对比度低等问题,提出了一种基于拉普拉斯金字塔(LP)和局部二值模式(LBP)的红外与可见光图像融合算法.对源图像进行LP分解.在金字塔下采样的过程中,对每一层进行LBP特征提取... 针对传统拉普拉斯金字塔在进行图像融合时出现的细节信息丢失、对比度低等问题,提出了一种基于拉普拉斯金字塔(LP)和局部二值模式(LBP)的红外与可见光图像融合算法.对源图像进行LP分解.在金字塔下采样的过程中,对每一层进行LBP特征提取,将提取到的细节信息加到对应层上.对高、低频系数分别使用基于区域特性量测、绝对值取大的规则进行融合.应用融合后的金字塔重构融合图像.实验结果表明,所提出的算法相较于传统融合算法而言在主观视觉感知和客观评价指标上均有明显的提升. 展开更多
关键词 图像融合 拉普拉斯金字塔 局部二值模式
下载PDF
基于LBP和Mixup数据增强后的肺音识别 被引量:1
15
作者 古依聪 郭涛 +2 位作者 李成 刘启明 石帅 《计算机与数字工程》 2023年第1期268-272,共5页
肺音蕴含着重要的生理病理信息。对肺音进行智能化识别,是推进医疗现代化的一种重要方式。论文针对肺音分类问题,采用梅尔谱图(Mel)、小波变换(WT)、短时傅里叶变换(STFT)、恒Q变换(CQT)四种方法进行特征提取,并且使用构建的卷积神经网... 肺音蕴含着重要的生理病理信息。对肺音进行智能化识别,是推进医疗现代化的一种重要方式。论文针对肺音分类问题,采用梅尔谱图(Mel)、小波变换(WT)、短时傅里叶变换(STFT)、恒Q变换(CQT)四种方法进行特征提取,并且使用构建的卷积神经网络(CNN)和卷积神经网络与随机子空间判别结合法(CNN-RSM)对肺音进行分类。最终Mel谱图在CNN-RSM的测试集中的准确率为76.01%,特异度为89.7%,ICBHI得分为66.38%。经过与使用同一数据库的其他作者综合对比,本文肺音识别方法更具优势。 展开更多
关键词 梅尔谱图 卷积神经网络 随机子空间判别 局部二值模式 Mixup
下载PDF
Palmprint Recognition Based on Statistical Local Binary Orientation Code
16
作者 Mei-Ru Mu Qiu-Qi Ruan 《Journal of Electronic Science and Technology》 CAS 2010年第3期230-236,共7页
A novel coding based method named as local binary orientation code (LBOCode) for palmprint recognition is proposed. The palmprint image is firstly convolved with a bank of Gabor filters, and then the orientation inf... A novel coding based method named as local binary orientation code (LBOCode) for palmprint recognition is proposed. The palmprint image is firstly convolved with a bank of Gabor filters, and then the orientation information is attained with a winner-take-all rule. Subsequently, the resulting orientation mapping array is operated by uniform local binary pattern. Accordingly, LBOCode image is achieved which contains palmprint orientation information in pixel level. Further we divide the LBOCode image into several equal-size and nonoverlapping regions, and extract the statistical code histogram from each region independently, which builds a global description of palmprint in regional level. In matching stage, the matching score between two palmprints is achieved by calculating the two spatial enhanced histograms' dissimilarity, which brings the benefit of computational simplicity. Experimental results demonstrate that the proposed method achieves more promising recognition performance compared with that of several state-of-the-art methods. 展开更多
关键词 Gabor filter local binary pattern orientation code palmprint recognition.
下载PDF
基于感兴趣区域的改进型LBP手指静脉识别 被引量:2
17
作者 黄艳国 杨训根 周满国 《传感器与微系统》 CSCD 北大核心 2023年第4期143-147,共5页
为进一步提升手指静脉识别算法的识别率,在图像预处理阶段提出一种快速感兴趣区域(RoI)提取方法,简化候选区域提取的计算过程,缩短手指区域提取时间。识别特征则是在局部二值模式(LBP)的基础上,利用邻域像素的平均值代替中心值,通过邻... 为进一步提升手指静脉识别算法的识别率,在图像预处理阶段提出一种快速感兴趣区域(RoI)提取方法,简化候选区域提取的计算过程,缩短手指区域提取时间。识别特征则是在局部二值模式(LBP)的基础上,利用邻域像素的平均值代替中心值,通过邻域像素的关系引入,提升了图像的纹理表达效果。在SDUMLA数据库与天津市智能实验室采集指静脉图像数据库上,分别取得了99.53%,99.74%的识别率,表明了算法优良的识别性能与泛化能力。 展开更多
关键词 手指静脉识别 感兴趣区域 局部二值模式
下载PDF
基于LBP纹理与SegNet网络的灾损建筑物提取 被引量:3
18
作者 谢跃辉 李百寿 高豫川 《北京测绘》 2023年第3期397-401,共5页
高分辨率遥感影像中震后灾损建筑物提取是震害预估中极具重要的参考指标,研究遥感影像的震后灾损建筑物提取方法具有重要的科学意义。本文以青海玉树震后典型的灾损建筑物数据为研究对象,针对卷积神经网络对于城市建筑物纹理特征信息利... 高分辨率遥感影像中震后灾损建筑物提取是震害预估中极具重要的参考指标,研究遥感影像的震后灾损建筑物提取方法具有重要的科学意义。本文以青海玉树震后典型的灾损建筑物数据为研究对象,针对卷积神经网络对于城市建筑物纹理特征信息利用的不足,将局部二值模式(LBP)纹理特征与SegNet深度卷积神经网络相结合,采用有监督学习分类的方式训练卷积神经网络,实现震后灾损建筑物自动分类提取,并与传统面向对象提取方法进行对比。实验结果表明,LBP纹理特征与SegNet卷积神经网络模型相结合,对于震后灾损建筑物的提取能提高预测精度,用户精度与生产者精度分别有2%~7%,2%~9%的提升。 展开更多
关键词 局部二值模式纹理 SegNet网络 灾损建筑物 自动提取
下载PDF
结合改进LBP和SRC的高光谱图像分类研究 被引量:1
19
作者 龚渝 赵圣璞 +1 位作者 徐俊洁 赵慧敏 《计算机工程与应用》 CSCD 北大核心 2023年第2期253-260,共8页
针对传统局部二值模型(local binary pattern,LBP)提取高光谱图像纹理特征信息量庞大的难题,提出一种基于对称旋转不变等价局部二值模型(symmetrical rotation invariant uniform LBP,SRIULBP)的高光谱图像特征提取方法,以缩减特征维度... 针对传统局部二值模型(local binary pattern,LBP)提取高光谱图像纹理特征信息量庞大的难题,提出一种基于对称旋转不变等价局部二值模型(symmetrical rotation invariant uniform LBP,SRIULBP)的高光谱图像特征提取方法,以缩减特征维度;针对稀疏表示分类(sparse representation classification,SRC)模型中稀疏字典冗余的缺陷,采用近邻思想,提出最近邻稀疏表示(nearest neighbor SRC,NNSRC)分类方法,实现高光谱图像的高效、高准确度分类。数据实验结合表明,SRIULBP能快速提取图像特征,提出的分类方法不仅在分类精度上优于其他稀疏表示分类算法,并且具有更强的时效性与泛化能力。 展开更多
关键词 高光谱图像分类 改进局部二值模型 特征提取 最近邻稀疏表示
下载PDF
基于LBP和神经网络的织物疵点分类
20
作者 孙红蕊 周星亚 +2 位作者 原义豪 木也塞尔·努热合买提 夏克尔·赛塔尔 《服饰导刊》 2023年第3期110-120,共11页
织物疵点在销售中严重影响着产品的价格与品质,传统的织物疵点检测主要依靠人工检测,这种检测方式如今无法满足机器化时代下的高速度、高精度、高质量的要求。针对织物疵点检测难度大,效率低的问题,文章采用局部二值模式(LBP)和神经网... 织物疵点在销售中严重影响着产品的价格与品质,传统的织物疵点检测主要依靠人工检测,这种检测方式如今无法满足机器化时代下的高速度、高精度、高质量的要求。针对织物疵点检测难度大,效率低的问题,文章采用局部二值模式(LBP)和神经网络对织物疵点分类。首先,采用局部二值模式(LBP)对织物疵点纹理特征进行提取;其次,将特征值进行归一化处理并且将获得的特征值如能量、方差、熵等送入到已经训练好的BP神经网络中;最后,通过BP神经网络将前面送入的织物疵点特征值进行织物疵点先识别再分类;研究认为:基于局部二值模式和神经网络的织物疵点检测方法是一种可行的方法。该方法的平均准确率达到80%以上,平均召回率达到80%以上,分类的平均正确率达到85%以上。 展开更多
关键词 织物疵点分类 神经网络 局部二值化 特征提取
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部