This paper concerns the Log-rank test for comparing survival curves of neonatal mortality characteristic groups in River Nile State, Sudan. In this paper, log-rank test is used to compare two or more survival curves f...This paper concerns the Log-rank test for comparing survival curves of neonatal mortality characteristic groups in River Nile State, Sudan. In this paper, log-rank test is used to compare two or more survival curves for the characteristics of newborn associated with newborn death after using Kaplan-Meier methods to estimate and graph survival curves for the variable of interest as (sex of newborn, weight of newborn, gestational age, mode of delivery and resident type), at the hospital of River Nile state—Sudan, with a sample size 700 of newborn in which the admission to the Neonatal Intensive Care Unit (NICU) of those hospitals during the period 2018-2020. In term of risk of death for newborn we found that 25% of sample study for newborns who were born in River Nile State-Sudan died. In addition, we conclude that after the log-rank statistics and Kaplan-Meier methods were applied, gender does not affect the newborn’s risk of survival, while the risk of survival increases when the birth weight is greater than 4.35 kg and the gestational age is greater than 42 weeks. There is no difference in the probability of survival for newborns whether the delivery is normal or cesarean. However, newborns are significantly more likely to survive in urban areas than in rural areas.展开更多
Time-to-event has become one of the primary endpoints of many clinical trials. Comparing treatments and therapies using time-to-event (or “survival”) data requires some care, since survival differences may occur eit...Time-to-event has become one of the primary endpoints of many clinical trials. Comparing treatments and therapies using time-to-event (or “survival”) data requires some care, since survival differences may occur either early or late in the follow-up period, depending on various factors such as the initial potency or the duration of efficacy of the drugs. In this work, we investigate the effect of the CIMAvax?EGF vaccine therapy on the survival of patients with non-small cell lung cancer, using stratified and unstratified weighted log-rank tests. Weighted log-rank tests are designed to identify early and late survival differences between treatments. Using these tests, we conclude that the vaccine is more efficient than the standard therapy among patients less than 60 years of age.展开更多
It is a common issue to compare treatment-specific survival and the weighted log-rank test is the most popular method for group comparison. However, in observational studies, treatments and censoring times are usually...It is a common issue to compare treatment-specific survival and the weighted log-rank test is the most popular method for group comparison. However, in observational studies, treatments and censoring times are usually not independent, which invalidates the weighted log-rank tests. In this paper, we propose adjusted weighted log-rank tests in the presence of non-random treatment assignment and dependent censoring. A double-inverse weighted technique is developed to adjust the weighted log-rank tests. Specifically, inverse probabilities of treatment and censoring weighting are involved to balance the baseline treatment assignment and to overcome dependent censoring, respectively. We derive the asymptotic distribution of the proposed adjusted tests under the null hypothesis, and propose a method to obtain the critical values. Simulation studies show that the adjusted log-rank tests have correct sizes whereas the traditional weighted log-rank tests may fail in the presence of non-random treatment assignment and dependent censoring. An application to oropharyngeal carcinoma data from the Radiation Therapy Oncology Group is provided for illustration.展开更多
Recurrent event time data are common in biomedical follow-up studies, in which a study subject may experience repeated occurrences of an event of interest. In this paper, we evaluate two popular nonparametric tests fo...Recurrent event time data are common in biomedical follow-up studies, in which a study subject may experience repeated occurrences of an event of interest. In this paper, we evaluate two popular nonparametric tests for recurrent event time data in terms of their relative effciency. One is the log-rank test for classical survival data and the other a more recently developed nonparametric test based on comparing mean recurrent rates. We show analytically that, somewhat surprisingly, the log-rank test that only makes use of time to the first occurrence could be more effcient than the test for mean occurrence rates that makes use of all available recurrence times, provided that subject-to-subject variation of recurrence times is large. Explicit formula are derived for asymptotic relative effciencies under the frailty model. The findings are demonstrated via extensive simulations.展开更多
文摘This paper concerns the Log-rank test for comparing survival curves of neonatal mortality characteristic groups in River Nile State, Sudan. In this paper, log-rank test is used to compare two or more survival curves for the characteristics of newborn associated with newborn death after using Kaplan-Meier methods to estimate and graph survival curves for the variable of interest as (sex of newborn, weight of newborn, gestational age, mode of delivery and resident type), at the hospital of River Nile state—Sudan, with a sample size 700 of newborn in which the admission to the Neonatal Intensive Care Unit (NICU) of those hospitals during the period 2018-2020. In term of risk of death for newborn we found that 25% of sample study for newborns who were born in River Nile State-Sudan died. In addition, we conclude that after the log-rank statistics and Kaplan-Meier methods were applied, gender does not affect the newborn’s risk of survival, while the risk of survival increases when the birth weight is greater than 4.35 kg and the gestational age is greater than 42 weeks. There is no difference in the probability of survival for newborns whether the delivery is normal or cesarean. However, newborns are significantly more likely to survive in urban areas than in rural areas.
基金supported by a UICC International Cancer Technology Transfer Fellowship.
文摘Time-to-event has become one of the primary endpoints of many clinical trials. Comparing treatments and therapies using time-to-event (or “survival”) data requires some care, since survival differences may occur either early or late in the follow-up period, depending on various factors such as the initial potency or the duration of efficacy of the drugs. In this work, we investigate the effect of the CIMAvax?EGF vaccine therapy on the survival of patients with non-small cell lung cancer, using stratified and unstratified weighted log-rank tests. Weighted log-rank tests are designed to identify early and late survival differences between treatments. Using these tests, we conclude that the vaccine is more efficient than the standard therapy among patients less than 60 years of age.
基金Supported by Beijing Municipal Education Commission (Grant No. KM202010028017)the National Natural Science Foundation of China (Grant Nos. 11771431 and 11690015)+2 种基金the Key Laboratory of RCSDSCAS (Grant No. 2008DP173182)the Academy for Multidisciplinary Studies of Capital Normal University。
文摘It is a common issue to compare treatment-specific survival and the weighted log-rank test is the most popular method for group comparison. However, in observational studies, treatments and censoring times are usually not independent, which invalidates the weighted log-rank tests. In this paper, we propose adjusted weighted log-rank tests in the presence of non-random treatment assignment and dependent censoring. A double-inverse weighted technique is developed to adjust the weighted log-rank tests. Specifically, inverse probabilities of treatment and censoring weighting are involved to balance the baseline treatment assignment and to overcome dependent censoring, respectively. We derive the asymptotic distribution of the proposed adjusted tests under the null hypothesis, and propose a method to obtain the critical values. Simulation studies show that the adjusted log-rank tests have correct sizes whereas the traditional weighted log-rank tests may fail in the presence of non-random treatment assignment and dependent censoring. An application to oropharyngeal carcinoma data from the Radiation Therapy Oncology Group is provided for illustration.
基金supported by US National Science Foundation (Grant No. DMS-0504269)
文摘Recurrent event time data are common in biomedical follow-up studies, in which a study subject may experience repeated occurrences of an event of interest. In this paper, we evaluate two popular nonparametric tests for recurrent event time data in terms of their relative effciency. One is the log-rank test for classical survival data and the other a more recently developed nonparametric test based on comparing mean recurrent rates. We show analytically that, somewhat surprisingly, the log-rank test that only makes use of time to the first occurrence could be more effcient than the test for mean occurrence rates that makes use of all available recurrence times, provided that subject-to-subject variation of recurrence times is large. Explicit formula are derived for asymptotic relative effciencies under the frailty model. The findings are demonstrated via extensive simulations.