期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Novel Parameter-Optimized Recurrent Attention Network for Pipeline Leakage Detection 被引量:2
1
作者 Tong Sun Chuang Wang +2 位作者 Hongli Dong Yina Zhou Chuang Guan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1064-1076,共13页
Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing... Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing DL methods have difficulty in achieving good performance in identifying leakage types due to the complex time dynamics of pipeline data.On the other hand,the initial parameter selection in the detection model is generally random,which may lead to unstable recognition performance.For this reason,a hybrid DL framework referred to as parameter-optimized recurrent attention network(PRAN)is presented in this paper to improve the accuracy of PLD.First,a parameter-optimized long short-term memory(LSTM)network is introduced to extract effective and robust features,which exploits a particle swarm optimization(PSO)algorithm with cross-entropy fitness function to search for globally optimal parameters.With this framework,the learning representation capability of the model is improved and the convergence rate is accelerated.Moreover,an anomaly-attention mechanism(AM)is proposed to discover class discriminative information by weighting the hidden states,which contributes to amplifying the normalabnormal distinguishable discrepancy,further improving the accuracy of PLD.After that,the proposed PRAN not only implements the adaptive optimization of network parameters,but also enlarges the contribution of normal-abnormal discrepancy,thereby overcoming the drawbacks of instability and poor generalization.Finally,the experimental results demonstrate the effectiveness and superiority of the proposed PRAN for PLD. 展开更多
关键词 attention mechanism(AM) long shortterm memory(LSTM) parameter-optimized recurrent attention network(PRAN) particle swarm optimization(PSO) pipeline leakage detection(PLD)
下载PDF
Visual analytics tool for the interpretation of hidden states in recurrent neural networks 被引量:1
2
作者 Rafael Garcia Tanja Munz Daniel Weiskopf 《Visual Computing for Industry,Biomedicine,and Art》 EI 2021年第1期233-245,共13页
In this paper,we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks.Our technique allows the user to interactively inspect ... In this paper,we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks.Our technique allows the user to interactively inspect how hidden states store and process information throughout the feeding of an input sequence into the network.The technique can help answer questions,such as which parts of the input data have a higher impact on the prediction and how the model correlates each hidden state configuration with a certain output.Our visual analytics approach comprises several components:First,our input visualization shows the input sequence and how it relates to the output(using color coding).In addition,hidden states are visualized through a nonlinear projection into a 2-D visualization space using t-distributed stochastic neighbor embedding to understand the shape of the space of the hidden states.Trajectories are also employed to show the details of the evolution of the hidden state configurations.Finally,a time-multi-class heatmap matrix visualizes the evolution of the expected predictions for multi-class classifiers,and a histogram indicates the distances between the hidden states within the original space.The different visualizations are shown simultaneously in multiple views and support brushing-and-linking to facilitate the analysis of the classifications and debugging for misclassified input sequences.To demonstrate the capability of our approach,we discuss two typical use cases for long short-term memory models applied to two widely used natural language processing datasets. 展开更多
关键词 Visual analytics VISUALIZATION Machine learning Classification Recurrent neural networks long shortterm memory Hidden states INTERPRETABILITY Natural language processing Nonlinear projection
下载PDF
Novel Hybrid Physics‑Informed Deep Neural Network for Dynamic Load Prediction of Electric Cable Shovel 被引量:1
3
作者 Tao Fu Tianci Zhang +1 位作者 Yunhao Cui Xueguan Song 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期151-164,共14页
Electric cable shovel(ECS)is a complex production equipment,which is widely utilized in open-pit mines.Rational valuations of load is the foundation for the development of intelligent or unmanned ECS,since it directly... Electric cable shovel(ECS)is a complex production equipment,which is widely utilized in open-pit mines.Rational valuations of load is the foundation for the development of intelligent or unmanned ECS,since it directly influences the planning of digging trajectories and energy consumption.Load prediction of ECS mainly consists of two types of methods:physics-based modeling and data-driven methods.The former approach is based on known physical laws,usually,it is necessarily approximations of reality due to incomplete knowledge of certain processes,which introduces bias.The latter captures features/patterns from data in an end-to-end manner without dwelling on domain expertise but requires a large amount of accurately labeled data to achieve generalization,which introduces variance.In addition,some parts of load are non-observable and latent,which cannot be measured from actual system sensing,so they can’t be predicted by data-driven methods.Herein,an innovative hybrid physics-informed deep neural network(HPINN)architecture,which combines physics-based models and data-driven methods to predict dynamic load of ECS,is presented.In the proposed framework,some parts of the theoretical model are incorporated,while capturing the difficult-to-model part by training a highly expressive approximator with data.Prior physics knowledge,such as Lagrangian mechanics and the conservation of energy,is considered extra constraints,and embedded in the overall loss function to enforce model training in a feasible solution space.The satisfactory performance of the proposed framework is verified through both synthetic and actual measurement dataset. 展开更多
关键词 Hybrid physics-informed deep learning Dynamic load prediction Electric cable shovel(ECS) long shortterm memory(LSTM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部