期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic stability of axially accelerating viscoelastic plates with longitudinally varying tensions 被引量:1
1
作者 Youqi TANG Dengbo ZHANG +2 位作者 Mohan RUI Xin WANG Dicheng ZHU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第12期1647-1668,共22页
The dynamic stability of axially accelerating plates is investigated. Longitudi- nally varying tensions due to the acceleration and nonhomogeneous boundary conditions are highlighted. A model of the plate combined wit... The dynamic stability of axially accelerating plates is investigated. Longitudi- nally varying tensions due to the acceleration and nonhomogeneous boundary conditions are highlighted. A model of the plate combined with viscoelasticity is applied. In the viscoelastic constitutive relationship, the material derivative is used to take the place of the partial time derivative. Analytical and numerical methods are used to investigate summation and principal parametric resonances, respectively. By use of linear models for the transverse behavior in the small displacement regime, the plate is confined by a viscous damping force. The generalized Hamilton principle is used to derive the govern- ing equations, the initial conditions, and the boundary conditions of the coupled planar vibration. The solvability conditions are established by directly using the method of mul- tiple scales. The Routh-Hurwitz criterion is used to obtain the necessary and sufficient condition of the stability. Numerical examples are given to show the effects of related parameters on the stability boundaries. The validity of longitudinally varying tensions and nonhomogeneous boundary conditions is highlighted by comparing the results of the method of multiple scales with those of a differential quadrature scheme. 展开更多
关键词 parametric resonance axially moving plate longitudinally varying tension nonhomogeneous boundary condition
下载PDF
Micromechanical modeling of longitudinal tensile behavior and failure mechanism of unidirectional carbon fiber/aluminum composites involving fiber strength dispersion
2
作者 Qipeng LIU Wengang JIANG +3 位作者 Yuehua GAO Zhenjun WANG Shanshan SHI Zhi SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期312-327,共16页
This paper examines the longitudinal tensile behavior and failure mechanism of a new unidirectional carbon fiber reinforced aluminum composite through experiments and simulations.A Weibull distribution model was estab... This paper examines the longitudinal tensile behavior and failure mechanism of a new unidirectional carbon fiber reinforced aluminum composite through experiments and simulations.A Weibull distribution model was established to describe the fiber strength dispersion based on single-fiber tensile tests for carbon fibers extracted from the composite.The constitutive models for the matrix and interface were established based on the uniaxial tensile and single-fiber push-out tests,respectively.Then,a 3D micromechanical numerical model,innovatively considering the fiber strength dispersion by use of the weakest link and Weibull distribution theories,was estab-lished to simulate the progressive failure behavior of the composite under longitudinal tension.Due to the dispersion of fiber strength,the weakest link of the fiber first fractures,and stress concentra-tion occurs in the surrounding fibers,interfaces,and matrix.The maximum stress concentration fac-tor for neighboring fibers varies nonlinearly with the distance from the fractured fiber.Both isolated and clustered fractured fibers are present during the progressive failure process of the composite.The expansion of fractured fiber clusters intensifies stress concentration and material degradation which in turn enlarges the fractured fiber clusters,and their mutual action leads to the final collapse of the composite. 展开更多
关键词 Fiber reinforced metals Finite element method 3D micromechanical model Fiber strength dispersion longitudinal tension Progressive failure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部