期刊文献+
共找到40,701篇文章
< 1 2 250 >
每页显示 20 50 100
Primary frequency control considering communication delay for grid-connected offshore wind power systems
1
作者 Xueping Pan Qijie Xu +5 位作者 Tao Xu Jinpeng Guo Xiaorong Sun Yuquan Chen Qiang Li Wei Liang 《Global Energy Interconnection》 EI CSCD 2024年第3期241-253,共13页
Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque... Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy. 展开更多
关键词 Offshore wind power Primary frequency control Time delay Padéapproximation Time-delay compensation control
下载PDF
Deep Reinforcement Learning Based Joint Cooperation Clustering and Downlink Power Control for Cell-Free Massive MIMO
2
作者 Du Mingjun Sun Xinghua +2 位作者 Zhang Yue Wang Junyuan Liu Pei 《China Communications》 SCIE CSCD 2024年第11期1-14,共14页
In recent times,various power control and clustering approaches have been proposed to enhance overall performance for cell-free massive multipleinput multiple-output(CF-mMIMO)networks.With the emergence of deep reinfo... In recent times,various power control and clustering approaches have been proposed to enhance overall performance for cell-free massive multipleinput multiple-output(CF-mMIMO)networks.With the emergence of deep reinforcement learning(DRL),significant progress has been made in the field of network optimization as DRL holds great promise for improving network performance and efficiency.In this work,our focus delves into the intricate challenge of joint cooperation clustering and downlink power control within CF-mMIMO networks.Leveraging the potent deep deterministic policy gradient(DDPG)algorithm,our objective is to maximize the proportional fairness(PF)for user rates,thereby aiming to achieve optimal network performance and resource utilization.Moreover,we harness the concept of“divide and conquer”strategy,introducing two innovative methods termed alternating DDPG(A-DDPG)and hierarchical DDPG(H-DDPG).These approaches aim to decompose the intricate joint optimization problem into more manageable sub-problems,thereby facilitating a more efficient resolution process.Our findings unequivo-cally showcase the superior efficacy of our proposed DDPG approach over the baseline schemes in both clustering and downlink power control.Furthermore,the A-DDPG and H-DDPG obtain higher performance gain than DDPG with lower computational complexity. 展开更多
关键词 cell-free massive MIMO CLUSTERING deep reinforcement learning power control
下载PDF
Safety-Constrained Multi-Agent Reinforcement Learning for Power Quality Control in Distributed Renewable Energy Networks
3
作者 Yongjiang Zhao Haoyi Zhong Chang Cyoon Lim 《Computers, Materials & Continua》 SCIE EI 2024年第4期449-471,共23页
This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature i... This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature in modern power grids.To tackle the unique challenges of voltage control in distributed renewable energy networks,researchers are increasingly turning towards multi-agent reinforcement learning(MARL).However,MARL raises safety concerns due to the unpredictability in agent actions during their exploration phase.This unpredictability can lead to unsafe control measures.To mitigate these safety concerns in MARL-based voltage control,our study introduces a novel approach:Safety-ConstrainedMulti-Agent Reinforcement Learning(SC-MARL).This approach incorporates a specialized safety constraint module specifically designed for voltage control within the MARL framework.This module ensures that the MARL agents carry out voltage control actions safely.The experiments demonstrate that,in the 33-buses,141-buses,and 322-buses power systems,employing SC-MARL for voltage control resulted in a reduction of the Voltage Out of Control Rate(%V.out)from0.43,0.24,and 2.95 to 0,0.01,and 0.03,respectively.Additionally,the Reactive Power Loss(Q loss)decreased from 0.095,0.547,and 0.017 to 0.062,0.452,and 0.016 in the corresponding systems. 展开更多
关键词 power quality control multi-agent reinforcement learning safety-constrained MARL
下载PDF
Research on the Control Strategy of Micro Wind-Hydrogen Coupled System Based on Wind Power Prediction and Hydrogen Storage System Charging/Discharging Regulation
4
作者 Yuanjun Dai Haonan Li Baohua Li 《Energy Engineering》 EI 2024年第6期1607-1636,共30页
This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of w... This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of wind power generation.A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction,the hydrogen storage state division interval,and the daily scheduled output of wind power generation.The control strategy maximizes the power tracking capability,the regulation capability of the hydrogen storage system,and the fluctuation of the joint output of the wind-hydrogen coupled system as the objective functions,and adaptively optimizes the control coefficients of the hydrogen storage interval and the output parameters of the system by the combined sigmoid function and particle swarm algorithm(sigmoid-PSO).Compared with the real-time control strategy,the proposed predictive control strategy can significantly improve the output tracking capability of the wind-hydrogen coupling system,minimize the gap between the actual output and the predicted output,significantly enhance the regulation capability of the hydrogen storage system,and mitigate the power output fluctuation of the wind-hydrogen integrated system,which has a broad practical application prospect. 展开更多
关键词 Micro wind-hydrogen coupling system ultra-short-term wind power prediction sigmoid-PSO algorithm adaptive roll optimization predictive control strategy
下载PDF
Mathematical Modeling and Control Algorithm Development for Bidirectional Power Flow in CCS-CNT System
5
作者 Sinqobile Wiseman Nene 《Journal of Power and Energy Engineering》 2024年第9期131-143,共12页
As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS... As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges. 展开更多
关键词 Capacitor Couple Substation Ferroresonance power Flow control controllable Network controller Capacitor-Coupled Substation Incorporating controllable Network Transformer (CCS-CNT) System System Modeling
下载PDF
Robust Nonlinear Current Sensorless Control of the Boost Converter with Constant Power Load
6
作者 Said Oucheriah Abul Azad 《Circuits and Systems》 2024年第3期29-43,共15页
The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ... The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations. 展开更多
关键词 Boost Converter Robust Sliding Mode control Constant power Load (CPL) Current-Sensorless control Extended State Observer
下载PDF
DC active power filter based on model predictive control for DC bus overvoltage suppression of accelerator grid power supply 被引量:1
7
作者 张鸿淇 朱帮友 +3 位作者 马少翔 李志恒 张明 潘垣 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第6期1-13,共13页
The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated... The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated step-up structure.There is a DC bus between the rectifier and the inverter.In order to limit DC bus voltage ripple and transient fluctuations,a large number of capacitors are used,which degrades the reliability of the power supply and occupies a large amount of space.This work finds that due to the difference in the turn-off time of the rectifier and the inverter,the capacitance mainly depends on the rectifier current when the inverter is turned off.On this basis,an active power filter(APF)scheme is proposed to absorb the current.To enhance the dynamic response ability of the APF,model predictive control is adopted.In this paper,the circuit structure of the APF is introduced,the prediction model is deduced,the corresponding control strategy and signal detection method are proposed,and the simulation and experimental results show that APF can track the transient current of the DC bus and reduce the voltage fluctuation significantly. 展开更多
关键词 CFETR NBI accelerator grid power supply power active filter model predictive control
下载PDF
A fuzzy control and neural network based rotor speed controller for maximum power point tracking in permanent magnet synchronous wind power generation system 被引量:1
8
作者 Min Ding Zili Tao +3 位作者 Bo Hu Meng Ye Yingxiong Ou Ryuichi Yokoyama 《Global Energy Interconnection》 EI CSCD 2023年第5期554-566,共13页
When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power refer... When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation. 展开更多
关键词 Maximum wind power tracking Fuzzy control Neural network
下载PDF
A Deep Reinforcement Learning-Based Power Control Scheme for the 5G Wireless Systems 被引量:1
9
作者 Renjie Liang Haiyang Lyu Jiancun Fan 《China Communications》 SCIE CSCD 2023年第10期109-119,共11页
In the fifth generation(5G)wireless system,a closed-loop power control(CLPC)scheme based on deep Q learning network(DQN)is introduced to intelligently adjust the transmit power of the base station(BS),which can improv... In the fifth generation(5G)wireless system,a closed-loop power control(CLPC)scheme based on deep Q learning network(DQN)is introduced to intelligently adjust the transmit power of the base station(BS),which can improve the user equipment(UE)received signal to interference plus noise ratio(SINR)to a target threshold range.However,the selected power control(PC)action in DQN is not accurately matched the fluctuations of the wireless environment.Since the experience replay characteristic of the conventional DQN scheme leads to a possibility of insufficient training in the target deep neural network(DNN).As a result,the Q-value of the sub-optimal PC action exceed the optimal one.To solve this problem,we propose the improved DQN scheme.In the proposed scheme,we add an additional DNN to the conventional DQN,and set a shorter training interval to speed up the training of the DNN in order to fully train it.Finally,the proposed scheme can ensure that the Q value of the optimal action remains maximum.After multiple episodes of training,the proposed scheme can generate more accurate PC actions to match the fluctuations of the wireless environment.As a result,the UE received SINR can achieve the target threshold range faster and keep more stable.The simulation results prove that the proposed scheme outperforms the conventional schemes. 展开更多
关键词 reinforcement learning closed-loop power control(CLPC) signal-to-interference-plusnoise ratio(SINR)
下载PDF
Operation Control Method of Relay Protection in Flexible DC Distribution Network Compatible with Distributed Power Supply 被引量:1
10
作者 Zihan Qi 《Energy Engineering》 EI 2023年第11期2547-2563,共17页
A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to... A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency. 展开更多
关键词 Compatible distributed power supply FLEXIBILITY DC distribution network relay protection operation control
下载PDF
Research on Comprehensive Control of Power Quality of Port Distribution Network Considering Large-Scale Access of Shore Power Load 被引量:1
11
作者 Yuqian Qi Mingshui Li +1 位作者 Yu Lu Baitong Li 《Energy Engineering》 EI 2023年第5期1185-1201,共17页
In view of the problem of power quality degradation of port distribution network after the large-scale application of shore power load,a method of power quality management of port distribution network is proposed.Base... In view of the problem of power quality degradation of port distribution network after the large-scale application of shore power load,a method of power quality management of port distribution network is proposed.Based on the objective function of the best power quality management effect and the smallest investment cost of the management device,the optimization model of power quality management in the distribution network after the large-scale application of large-capacity shore power is constructed.Based on the balance between the economic demand of distribution network resources optimization and power quality management capability,the power quality of distribution network is considered comprehensively.The proposed optimization algorithm for power quality management based on Matlab and OpenDSS is proposed and analyzed for port distribution networks.The simulation results show that the proposed optimizationmethod can maximize the power qualitymanagement capability of the port distribution network,and the proposed optimization algorithm has good convergence and global optimization finding capability. 展开更多
关键词 Shore power harmonic control multi objective optimization particle swarm optimization algorithm
下载PDF
An Adaptive Wireless Power Sharing Control for Multiterminal HVDC
12
作者 Hasan Alrajhi 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期117-129,共13页
Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined contro... Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined controller coefficient.Furthermore,fixed power sharing control also suffers from an inability to identify power availability at a rectification station.There is a need for a controller that ensures an efficient power sharing among the MT-HVDC terminals,prevents the possibility of overloading,and utilizes the available power sharing.A new adaptive wireless control for active power sharing among multiterminal(MT-HVDC)systems,including power availability and power management policy,is proposed in this paper.The proposed control strategy solves these issues and,this proposed controller strategy is a generic method that can be applied for unlimited number of converter stations.The rational of this proposed controller is to increase the system reliability by avoiding the necessity of fast communication links.The test system in this paper consists of four converter stations based on three phase-two AC voltage levels.The proposed control strategy for a multiterminal HVDC system is conducted in the power systems computer aided design/electromagnetic transient design and control(PSCAD/EMTDC)simulation environment.The simulation results significantly show the flexibility and usefulness of the proposed power sharing control provided by the new adaptive wireless method. 展开更多
关键词 Active power control fixed power sharing current control HVDC transmission MTDC voltage source converter(VSC) power sharing control adaptive wireless control power conversion
下载PDF
A Multi-mode Electronic Load Sensing Control Scheme with Power Limitation and Pressure Cut-off for Mobile Machinery
13
作者 Min Cheng Bolin Sun +1 位作者 Ruqi Ding Bing Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期157-170,共14页
In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are ... In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are integrated into the electronic controller only from the pump level,leading to the potential instability of the overall system.To solve this problem,a multi-mode electrohydraulic load sensing(MELS)control scheme is proposed especially considering the switching stability from the system level,which includes four working modes of flow control,load sensing,power limitation,and pressure control.Depending on the actual working requirements,the switching rules for the different modes and the switching direction(i.e.,the modes can be switched bilaterally or unilaterally)are defined.The priority of different modes is also defined,from high to low:pressure control,power limitation,load sensing,and flow control.When multiple switching rules are satisfied at the same time,the system switches to the control mode with the highest priority.In addition,the switching stability between flow control and pressure control modes is analyzed,and the controller parameters that guarantee the switching stability are obtained.A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator.The results show that the MELS controller can achieve the control functions of proper flow supplement,power limitation,and pressure cut-off,which has good stability performance when switching between different control modes.This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions. 展开更多
关键词 Hydraulic control Load sensing MULTI-MODE power limitation Mobile machinery
下载PDF
Distributed robust power control in two-tier vehicle networks under uncertain channel environments
14
作者 Zhixin Liu Jiawei Su +3 位作者 Yuan-ai Xie Yazhou Yuan Yi Yang Xinping Guan 《Digital Communications and Networks》 SCIE CSCD 2023年第3期734-742,共9页
This paper proposes a novel optimization scheme to support stable and reliable vehicle-to-everything connections in two-tier networks,where the uplink channel of the cellular user is reused by underlay vehicle-to-vehi... This paper proposes a novel optimization scheme to support stable and reliable vehicle-to-everything connections in two-tier networks,where the uplink channel of the cellular user is reused by underlay vehicle-to-vehicle communications.However,considering complex channel fading and high-speed vehicle movement,the cer-tainty assumption is impractical and fails to maintain power control strategy in reality in the traditional statical vehicular networks.Rather than the perfect channel state information assumption,the first-order Gauss-Markov process which is a probabilistic model affected by vehicle speed and fading is introduced to describe imperfect channel gains.Moreover,interference management is a major challenge in reusing communications,especially in uncertain channel environments.Power control is an effective way to realize interference management,and optimal power allocation can ensure that interference of the user meets the communication requirements.In this study,the sum-rate-oriented power control scheme and minimum-rate-oriented power control scheme were implemented to manage interference and satisfy different design objectives.Since both of these schemes are non-convex and intractable,the Bernstein approximation and successive convex approximation methods were adopted to transform the original problems into convex ones.Furthermore,a novel distributed robust power control al-gorithm was developed to determine the optimal solutions.The performance of the algorithm was evaluated through numerical simulations,and the results indicate that the proposed algorithm is effective in vehicular communication networks with uncertain channel environments. 展开更多
关键词 Vehicle-to-Everything communications Vehicular two-tier networks Channel uncertainty power control
下载PDF
A novel fractional uplink power control framework for self-organizing networks
15
作者 Zezhou Luo Hongcheng Zhuang 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1434-1440,共7页
Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interfere... Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD). 展开更多
关键词 5G and beyond Self-organizing networks Uplink power control Optimization efficiency Traffic distribution
下载PDF
Model Predictive Control Strategy of Multi-Port Interline DC Power Flow Controller
16
作者 He Wang Xiangsheng Xu +1 位作者 Guanye Shen Bian Jing 《Energy Engineering》 EI 2023年第10期2251-2272,共22页
There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible D... There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible DC power grid.In recent years,a multi-port DC power flow controller based on a modular multi-level converter has become a focal point of research due to its simple structure and robust scalability.This work proposes a model predictive control(MPC)strategy for multi-port interline DC power flow controllers in order to improve their steady-state dynamic performance.Initially,the mathematical model of a multi-terminal DC power grid with a multi-port interline DC power flow controller is developed,and the relationship between each regulated variable and control variable is determined;The power flow controller is then discretized,and the cost function and weight factor are built with numerous control objectives.Sub module sorting method and nearest level approximation modulation regulate the power flow controller;Lastly,theMATLAB/Simulink simulation platformis used to verify the correctness of the establishedmathematicalmodel and the control performance of the suggestedMPC strategy.Finally,it is demonstrated that the control strategy possesses the benefits of robust dynamic performance,multiobjective control,and a simple structure. 展开更多
关键词 DC power flow controller model predictive control modular multi-level converter control strategy dynamic performance
下载PDF
PCTRAN Westinghouse AP1000 Power Control of Pressurized Water Reactor Using Simulink of MATLAB
17
作者 Ezeddin A. M. Ben Ihrayz 《Open Journal of Energy Efficiency》 2023年第2期25-35,共11页
This paper introduces the simulation, and controls using Simulink of MATLAB for PCTRAN (Personal Computer Transient Analysis) of the power control system (PWR) type pressurized water reactor of PWR WESTINGHOUSE AP1000... This paper introduces the simulation, and controls using Simulink of MATLAB for PCTRAN (Personal Computer Transient Analysis) of the power control system (PWR) type pressurized water reactor of PWR WESTINGHOUSE AP1000. The power controller model produces mathematical model description in nonlinear relation form in Simulink of MATLAB which is an important and popular program used at most universities for education. The power controller is described by a block diagram in this paper and some details introduce to clearly understand the work function. The results of action control compared with the PCTRAN programme in modes of automatic and manual control. 展开更多
关键词 Turbine Leading Mode Reactor Leading Mode Rod Speed Program Rod control Position Turbine Load power
下载PDF
Integrated design and performance optimization of three-electrode sliding discharge plasma power supply
18
作者 Borui ZHENG Linwu WANG +4 位作者 Jianbo ZHANG Shaojie QI Yuhong CHEN Haodong LIU Dongliang BIAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期152-161,共10页
The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a par... The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation. 展开更多
关键词 plasma flow control dielectric barrier discharge three-electrode sliding discharge plasma power supply
下载PDF
Development and Application of a Power Law Constitutive Model for Eddy Current Dampers
19
作者 Longteng Liang Zhouquan Feng +2 位作者 Hongyi Zhang Zhengqing Chen Changzhao Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2403-2419,共17页
Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tot... Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs. 展开更多
关键词 Eddy current damper constitutive model finite element analysis vibration control power law constitutive model
下载PDF
Ladder Time Stepwise Inertia Coordinated Control Method of Multiple Wind Farms to Suppress System Frequency Secondary Drop
20
作者 He Li Xianchao Liu +1 位作者 Jidong Li Yuchen Qiu 《Energy Engineering》 EI 2024年第8期2293-2311,共19页
Currently,both regulated and deregulated power trading exist in China’s power system,which has caused imbalanced funds in the electricity market.In this paper,a simulation analysis of the electricity market with wind... Currently,both regulated and deregulated power trading exist in China’s power system,which has caused imbalanced funds in the electricity market.In this paper,a simulation analysis of the electricity market with wind energy resources is conducted,and the calculation methods of unbalanced funds are investigated systematically.In detail,the calculation formulas of unbalanced funds are illustrated based on their definition,and a two-track electricity market clearing model is established.Firstly,the concept of the dual-track system is explained,and the specific calculation formulas of various types of unbalanced funds are provided.Next,considering the renewable energy consumption,the market clearing model based on DC power flow is constructed and solved;by combining fitting methods of mid-and long-term curves,the unbalanced funds are calculated based on clearing results and formulas. 展开更多
关键词 Wind power stepwise inertial frequency control secondary drop
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部