In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of...The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of the underlying 3D perovskite films,which inevitably hinders the transport of charge carriers at the interface of PSCs.Here,we designed and fabricated LD perovskite structure that forms net-like morphology on top of the underlying three-dimensional(3D)perovskite bulk film.The net-like LD perovskite not only reduced the surface defects of 3D perovskite film,but also provided channels for the vertical transport of charge carriers,effectively enhancing the interfacial charge transfer at the LD/3D hetero-interface.The net-like morphological design comprising LD perovskite effectively resolves the contradiction between interfacial defect passivation and carrier extraction across the hetero-interfaces.Furthermore,the net-like LD perovskite morphology can enhance the stability of the underlying 3D perovskite film,which is attributed to the hydrophobic nature of LD perovskite.As a result,the net-like LD perovskite film morphology assists PSCs in achieving an excellent power conversion efficiency of up to 24.6%with over 1000 h long-term operational stability.展开更多
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr...Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.展开更多
The systematic method for constructing Lewis representations is a method for representing chemical bonds between atoms in a molecule. It uses symbols to represent the valence electrons of the atoms involved in the bon...The systematic method for constructing Lewis representations is a method for representing chemical bonds between atoms in a molecule. It uses symbols to represent the valence electrons of the atoms involved in the bond. Using a number of rules in a defined order, it is often better suited to complicated cases than the Lewis representation of atoms. This method allows us to determine the formal charge and oxidation number of each atom in the edifice more efficiently than other methods.展开更多
Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water.Nevertheless,the conventional"trial and error"method for producing advanced electrocatalysts is not only cost-ineffecti...Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water.Nevertheless,the conventional"trial and error"method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive.Fortunately,the advancement of machine learning brings new opportunities for electrocatalysts discovery and design.By analyzing experimental and theoretical data,machine learning can effectively predict their hydrogen evolution reaction(HER)performance.This review summarizes recent developments in machine learning for low-dimensional electrocatalysts,including zero-dimension nanoparticles and nanoclusters,one-dimensional nanotubes and nanowires,two-dimensional nanosheets,as well as other electrocatalysts.In particular,the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted.Finally,the future directions and perspectives for machine learning in electrocatalysis are discussed,emphasizing the potential for machine learning to accelerate electrocatalyst discovery,optimize their performance,and provide new insights into electrocatalytic mechanisms.Overall,this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research.展开更多
For solution prepared perovskite solar cells,metal halide perovskite materials with low-dimensional(LD)are flexibly employed in 3D perovskite solar cells to promote efficiency and long-term stability.In this review,th...For solution prepared perovskite solar cells,metal halide perovskite materials with low-dimensional(LD)are flexibly employed in 3D perovskite solar cells to promote efficiency and long-term stability.In this review,the various structures,properties,and applications of LD perovskites are firstly summarized and discussed.To take advantage of LD materials,LD perovskites are introduced in the 3D bulk and/or the interface between the perovskite thin film and the carrier transporting layer to passivate the gain boundary defects while providing the stability advantage of LD materials.Therefore,the preparation methods and crystallization control of the LD perovskite layers are discussed in depth.Then,the combined devices using both LD and 3D components are reviewed on the basis of device design,cell structure,interface charge transfer,energy lever alignment,and synergistic improvement of both efficiency and stability.Finally,the challenges and expectations are speculated for further development of perovskite solar cells.展开更多
Pervasive developmental disorders (PDD) remain little known to populations in developing countries. In black Africa their social representations remain strongly influenced by local belief systems. The general objectiv...Pervasive developmental disorders (PDD) remain little known to populations in developing countries. In black Africa their social representations remain strongly influenced by local belief systems. The general objective of this study was to understand the perceptions and representations of Ivorian parents vis-à-vis PDD. This was a mixed (qualitative and quantitative) prospective cross-sectional study with a descriptive aim that involved a sample of 49 parents. The sampling was of the qualitative type by multiple cases with reasoned choice by saturation. Our results showed that male parents were mostly aged between 40 - 49 years (48.98%) with a higher level of education (67.34%) while mothers were mostly aged between 30 - 39 (61.22%) and a higher level (30.61%). Autistic children were negatively perceived by their parents: either as a source of psychological suffering (82.85%), or as mysterious children who sacrificed their parents (44.66%), or as “bobo” children (mute children in common Ivorian language) (16.66%) or like rude children (13.34%). The supposed origin of the disorder according to the parents was mystical-religious (60.94%);natural (25%);hereditary (6.25%). In 6.25% of cases, PDD were assumed to be of unknown or iatrogenic origin attributable to vaccination (1.56%). 75.51% of parents said that in addition to conventional medical therapies, they also used traditional therapies. The use of this therapeutic alternative would be linked to the perceptions and beliefs that feed the socio-cultural representations of our respondents.展开更多
The most common comorbid psychiatric disorders in children with type 1 diabetes mellitus(T1DM)are depression,anxiety and behavioral disorders.Patients with comorbid psychopathology are less capable of psychically adju...The most common comorbid psychiatric disorders in children with type 1 diabetes mellitus(T1DM)are depression,anxiety and behavioral disorders.Patients with comorbid psychopathology are less capable of psychically adjusting to the new life situation resulting from T1DM,which may negatively affect glycemic control and adherence related to the treatment.We aimed to investigate the association between mental health and type 1 diabetes including illness representation.115 children and adolescents with T1DM were recruited through the outpatient clinic in Debrecen,Hungary.Measures:PRISM-D,Child Depression Inventory(CDI),Cantril Ladder and Self-Rated Health,Glycosylaeted haemoglobin(HbA1C)were measured.Children having depressive symptoms drew fewer circles with less area.Children not drawing any important relationships possessed more depressive symptoms.Those diagnosed at a younger age displayed smaller distance between the Self-and Illness-circles.The PRISM-D test can be a promising tool to analyse emotional and cognitive representations and the psychological burden of T1DM.展开更多
Speech emotion recognition is essential for frictionless human-machine interaction,where machines respond to human instructions with context-aware actions.The properties of individuals’voices vary with culture,langua...Speech emotion recognition is essential for frictionless human-machine interaction,where machines respond to human instructions with context-aware actions.The properties of individuals’voices vary with culture,language,gender,and personality.These variations in speaker-specific properties may hamper the performance of standard representations in downstream tasks such as speech emotion recognition(SER).This study demonstrates the significance of speaker-specific speech characteristics and how considering them can be leveraged to improve the performance of SER models.In the proposed approach,two wav2vec-based modules(a speaker-identification network and an emotion classification network)are trained with the Arcface loss.The speaker-identification network has a single attention block to encode an input audio waveform into a speaker-specific representation.The emotion classification network uses a wav2vec 2.0-backbone as well as four attention blocks to encode the same input audio waveform into an emotion representation.These two representations are then fused into a single vector representation containing emotion and speaker-specific information.Experimental results showed that the use of speaker-specific characteristics improves SER performance.Additionally,combining these with an angular marginal loss such as the Arcface loss improves intra-class compactness while increasing inter-class separability,as demonstrated by the plots of t-distributed stochastic neighbor embeddings(t-SNE).The proposed approach outperforms previous methods using similar training strategies,with a weighted accuracy(WA)of 72.14%and unweighted accuracy(UA)of 72.97%on the Interactive Emotional Dynamic Motion Capture(IEMOCAP)dataset.This demonstrates its effectiveness and potential to enhance human-machine interaction through more accurate emotion recognition in speech.展开更多
Deep learning has been a catalyst for a transformative revo-lution in machine learning and computer vision in the past decade.Within these research domains,methods grounded in deep learning have exhibited exceptional ...Deep learning has been a catalyst for a transformative revo-lution in machine learning and computer vision in the past decade.Within these research domains,methods grounded in deep learning have exhibited exceptional performance across a spectrum of tasks.The success of deep learning methods can be attributed to their capability to derive potent representations from data,integral for a myriad of downstream applications.These representations encapsulate the intrinsic structure,fea-tures,or latent variables characterising the underlying statistics of visual data.Despite these achievements,the challenge per-sists in effectively conducting representation learning of visual data with deep models,particularly when confronted with vast and noisy datasets.This special issue is a dedicated platform for researchers worldwide to disseminate their latest,high-quality articles,aiming to enhance readers'comprehension of the principles,limitations,and diverse applications of repre-sentation learning in computer vision.展开更多
User representation learning is crucial for capturing different user preferences,but it is also critical challenging because user intentions are latent and dispersed in complex and different patterns of user-generated...User representation learning is crucial for capturing different user preferences,but it is also critical challenging because user intentions are latent and dispersed in complex and different patterns of user-generated data,and thus cannot be measured directly.Text-based data models can learn user representations by mining latent semantics,which is beneficial to enhancing the semantic function of user representations.However,these technologies only extract common features in historical records and cannot represent changes in user intentions.However,sequential feature can express the user’s interests and intentions that change time by time.But the sequential recommendation results based on the user representation of the item lack the interpretability of preference factors.To address these issues,we propose in this paper a novel model with Dual-Layer User Representation,named DLUR,where the user’s intention is learned based on two different layer representations.Specifically,the latent semantic layer adds an interactive layer based on Transformer to extract keywords and key sentences in the text and serve as a basis for interpretation.The sequence layer uses the Transformer model to encode the user’s preference intention to clarify changes in the user’s intention.Therefore,this dual-layer user mode is more comprehensive than a single text mode or sequence mode and can effectually improve the performance of recommendations.Our extensive experiments on five benchmark datasets demonstrate DLUR’s performance over state-of-the-art recommendation models.In addition,DLUR’s ability to explain recommendation results is also demonstrated through some specific cases.展开更多
Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount impo...Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount importance in the emerging field of edge AI.One widely used testing method for this purpose is fuzz testing,which detects bugs by inputting random test cases into the target program.However,this process consumes significant time and resources.To improve the efficiency of compiler fuzz testing,it is common practice to utilize test case prioritization techniques.Some researchers use machine learning to predict the code coverage of test cases,aiming to maximize the test capability for the target compiler by increasing the overall predicted coverage of the test cases.Nevertheless,these methods can only forecast the code coverage of the compiler at a specific optimization level,potentially missing many optimization-related bugs.In this paper,we introduce C-CORE(short for Clustering by Code Representation),the first framework to prioritize test cases according to their code representations,which are derived directly from the source codes.This approach avoids being limited to specific compiler states and extends to a broader range of compiler bugs.Specifically,we first train a scaled pre-trained programming language model to capture as many common features as possible from the test cases generated by a fuzzer.Using this pre-trained model,we then train two downstream models:one for predicting the likelihood of triggering a bug and another for identifying code representations associated with bugs.Subsequently,we cluster the test cases according to their code representations and select the highest-scoring test case from each cluster as the high-quality test case.This reduction in redundant testing cases leads to time savings.Comprehensive evaluation results reveal that code representations are better at distinguishing test capabilities,and C-CORE significantly enhances testing efficiency.Across four datasets,C-CORE increases the average of the percentage of faults detected(APFD)value by 0.16 to 0.31 and reduces test time by over 50% in 46% of cases.When compared to the best results from approaches using predicted code coverage,C-CORE improves the APFD value by 1.1% to 12.3% and achieves an overall time-saving of 159.1%.展开更多
Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in ...Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class-specific information of the test sample,which is very important for classification.For deformable images such as human faces,pixels at the same location of different images of the same subject usually have different intensities.Therefore,extracting features and correctly classifying such deformable objects is very hard.Moreover,the lighting,attitude and occlusion cause more difficulty.Considering the problems and challenges listed above,a novel image representation and classification algorithm is proposed.First,the authors’algorithm generates virtual samples by a non-linear variation method.This method can effectively extract the low-frequency information of space-domain features of the original image,which is very useful for representing deformable objects.The combination of the original and virtual samples is more beneficial to improve the clas-sification performance and robustness of the algorithm.Thereby,the authors’algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme.The weighting coefficients in the score fusion scheme are set entirely automatically.Finally,the algorithm classifies the samples based on the final scores.The experimental results show that our method performs better classification than conventional sparse representation algorithms.展开更多
Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit metho...Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit methods exist for accurately embedding ownership or copyright information in video data,the nascent NeRV framework has yet to address this issue comprehensively.In response,this paper introduces MarkINeRV,a scheme designed to embed watermarking information into video frames using an invertible neural network watermarking approach to protect the copyright of NeRV,which models the embedding and extraction of watermarks as a pair of inverse processes of a reversible network and employs the same network to achieve embedding and extraction of watermarks.It is just that the information flow is in the opposite direction.Additionally,a video frame quality enhancement module is incorporated to mitigate watermarking information losses in the rendering process and the possibility ofmalicious attacks during transmission,ensuring the accurate extraction of watermarking information through the invertible network’s inverse process.This paper evaluates the accuracy,robustness,and invisibility of MarkINeRV through multiple video datasets.The results demonstrate its efficacy in extracting watermarking information for copyright protection of NeRV.MarkINeRV represents a pioneering investigation into copyright issues surrounding NeRV.展开更多
Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representation...Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations.However,due to limitations in code representation and neural network design,the validity and practicality of the model still need to be improved.Additionally,due to differences in programming languages,most methods lack cross-language detection generality.To address these issues,in this paper,we analyze the shortcomings of previous code representations and neural networks.We propose a novel hierarchical code representation that combines Concrete Syntax Trees(CST)with Program Dependence Graphs(PDG).Furthermore,we introduce a Tree-Graph-Gated-Attention(TGGA)network based on gated recurrent units and attention mechanisms to build a Hierarchical Code Representation learning-based Vulnerability Detection(HCRVD)system.This system enables cross-language vulnerability detection at the function-level.The experiments show that HCRVD surpasses many competitors in vulnerability detection capabilities.It benefits from the hierarchical code representation learning method,and outperforms baseline in cross-language vulnerability detection by 9.772%and 11.819%in the C/C++and Java datasets,respectively.Moreover,HCRVD has certain ability to detect vulnerabilities in unknown programming languages and is useful in real open-source projects.HCRVD shows good validity,generality and practicality.展开更多
This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli an...This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions.展开更多
Based on Yan Fu’s translation norms of“faithfulness,expressiveness,and elegance”and Liu Miqing’s concept of aesthetic representation in translation,the present study employed a combined method of qualitative and q...Based on Yan Fu’s translation norms of“faithfulness,expressiveness,and elegance”and Liu Miqing’s concept of aesthetic representation in translation,the present study employed a combined method of qualitative and quantitative analysis to investigate the linguistic styles employed by Zhu Ziqing in his renowned prose Beiying.Then,using relevant corpora and self-designed Python software,we investigated whether Zhang Peiji,as a translator,has successfully reproduced the simplistic,emotional,and realistic linguistic characteristics in Zhu Ziqing’s prose from the perspectives of“faithfulness,expressiveness,and elegance.”The findings of the research indicate that by employing a dynamic imitative translation approach,Zhang Peiji has successfully enhanced the linguistic aesthetic qualities of the source text,striving to reflect the distinctive linguistic style of Zhu Ziqing.展开更多
This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sp...This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sparse representation and entropy weight method.Three different electrical quantities are selected as observations in the compressed sensing algorithm.The entropy weighting method is employed to calculate the weights of different observations based on their relative disturbance levels.Subsequently,by leveraging the topological information of the power system and pre-designing an overcomplete dictionary of disturbances based on the corresponding system parameter variations caused by disturbances,an improved Joint Generalized Orthogonal Matching Pursuit(J-GOMP)algorithm is utilized for reconstruction.The reconstructed sparse vectors are divided into three parts.If at least two parts have consistent node identifiers,the node is identified as the disturbance node.If the node identifiers in all three parts are inconsistent,further analysis is conducted considering the weights to determine the disturbance node.Simulation results based on the IEEE 39-bus system model demonstrate that the proposed method,utilizing electrical quantity information from only 8 measurement points,effectively locates disturbance positions and is applicable to various disturbance types with strong noise resistance.展开更多
Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself disc...Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.展开更多
To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive t...To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.展开更多
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金supported by the National Key Research and Development Program of China(2022YFB4200301)the National Natural Science Foundation of China(52202216)the Natural Science Foundation of Sichuan Province(24NSFSC1601).
文摘The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of the underlying 3D perovskite films,which inevitably hinders the transport of charge carriers at the interface of PSCs.Here,we designed and fabricated LD perovskite structure that forms net-like morphology on top of the underlying three-dimensional(3D)perovskite bulk film.The net-like LD perovskite not only reduced the surface defects of 3D perovskite film,but also provided channels for the vertical transport of charge carriers,effectively enhancing the interfacial charge transfer at the LD/3D hetero-interface.The net-like morphological design comprising LD perovskite effectively resolves the contradiction between interfacial defect passivation and carrier extraction across the hetero-interfaces.Furthermore,the net-like LD perovskite morphology can enhance the stability of the underlying 3D perovskite film,which is attributed to the hydrophobic nature of LD perovskite.As a result,the net-like LD perovskite film morphology assists PSCs in achieving an excellent power conversion efficiency of up to 24.6%with over 1000 h long-term operational stability.
基金the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.
文摘Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.
文摘The systematic method for constructing Lewis representations is a method for representing chemical bonds between atoms in a molecule. It uses symbols to represent the valence electrons of the atoms involved in the bond. Using a number of rules in a defined order, it is often better suited to complicated cases than the Lewis representation of atoms. This method allows us to determine the formal charge and oxidation number of each atom in the edifice more efficiently than other methods.
基金This work was supported by the National Natural Science Foundation of China(Grant No.22008098,52122408)the Program for Science&Technology Innovation Talents in Universities of Henan Province(No.22HASTIT008)+3 种基金the Programs for Science and Technology Development of Henan Province,China(No.222102320065)the Key Specialized Research and Development Breakthrough(Science and Technology)in Henan Province(No.212102210214)the Natural Science Foundations of Henan Province(No.222300420502)the Key Scientific Research Projects of University in Henan Province(No.23B430002).
文摘Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water.Nevertheless,the conventional"trial and error"method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive.Fortunately,the advancement of machine learning brings new opportunities for electrocatalysts discovery and design.By analyzing experimental and theoretical data,machine learning can effectively predict their hydrogen evolution reaction(HER)performance.This review summarizes recent developments in machine learning for low-dimensional electrocatalysts,including zero-dimension nanoparticles and nanoclusters,one-dimensional nanotubes and nanowires,two-dimensional nanosheets,as well as other electrocatalysts.In particular,the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted.Finally,the future directions and perspectives for machine learning in electrocatalysis are discussed,emphasizing the potential for machine learning to accelerate electrocatalyst discovery,optimize their performance,and provide new insights into electrocatalytic mechanisms.Overall,this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research.
基金supported by funds from the National Natural Science Foundation of China (grant nos.62004121 and 62174103)the supports of the Scientific and Technological Innovation Team Project of Shaanxi Innovation Capability Support Plan (2022TD-30)+1 种基金Youth Innovation Team of Shaanxi Universities (2019–2022)Top Young Talents Project of“Special Support Program for High Level Talents”in Shaanxi Province,China (2018–2023)。
文摘For solution prepared perovskite solar cells,metal halide perovskite materials with low-dimensional(LD)are flexibly employed in 3D perovskite solar cells to promote efficiency and long-term stability.In this review,the various structures,properties,and applications of LD perovskites are firstly summarized and discussed.To take advantage of LD materials,LD perovskites are introduced in the 3D bulk and/or the interface between the perovskite thin film and the carrier transporting layer to passivate the gain boundary defects while providing the stability advantage of LD materials.Therefore,the preparation methods and crystallization control of the LD perovskite layers are discussed in depth.Then,the combined devices using both LD and 3D components are reviewed on the basis of device design,cell structure,interface charge transfer,energy lever alignment,and synergistic improvement of both efficiency and stability.Finally,the challenges and expectations are speculated for further development of perovskite solar cells.
文摘Pervasive developmental disorders (PDD) remain little known to populations in developing countries. In black Africa their social representations remain strongly influenced by local belief systems. The general objective of this study was to understand the perceptions and representations of Ivorian parents vis-à-vis PDD. This was a mixed (qualitative and quantitative) prospective cross-sectional study with a descriptive aim that involved a sample of 49 parents. The sampling was of the qualitative type by multiple cases with reasoned choice by saturation. Our results showed that male parents were mostly aged between 40 - 49 years (48.98%) with a higher level of education (67.34%) while mothers were mostly aged between 30 - 39 (61.22%) and a higher level (30.61%). Autistic children were negatively perceived by their parents: either as a source of psychological suffering (82.85%), or as mysterious children who sacrificed their parents (44.66%), or as “bobo” children (mute children in common Ivorian language) (16.66%) or like rude children (13.34%). The supposed origin of the disorder according to the parents was mystical-religious (60.94%);natural (25%);hereditary (6.25%). In 6.25% of cases, PDD were assumed to be of unknown or iatrogenic origin attributable to vaccination (1.56%). 75.51% of parents said that in addition to conventional medical therapies, they also used traditional therapies. The use of this therapeutic alternative would be linked to the perceptions and beliefs that feed the socio-cultural representations of our respondents.
文摘The most common comorbid psychiatric disorders in children with type 1 diabetes mellitus(T1DM)are depression,anxiety and behavioral disorders.Patients with comorbid psychopathology are less capable of psychically adjusting to the new life situation resulting from T1DM,which may negatively affect glycemic control and adherence related to the treatment.We aimed to investigate the association between mental health and type 1 diabetes including illness representation.115 children and adolescents with T1DM were recruited through the outpatient clinic in Debrecen,Hungary.Measures:PRISM-D,Child Depression Inventory(CDI),Cantril Ladder and Self-Rated Health,Glycosylaeted haemoglobin(HbA1C)were measured.Children having depressive symptoms drew fewer circles with less area.Children not drawing any important relationships possessed more depressive symptoms.Those diagnosed at a younger age displayed smaller distance between the Self-and Illness-circles.The PRISM-D test can be a promising tool to analyse emotional and cognitive representations and the psychological burden of T1DM.
基金supported by the Chung-Ang University Graduate Research Scholarship in 2021.
文摘Speech emotion recognition is essential for frictionless human-machine interaction,where machines respond to human instructions with context-aware actions.The properties of individuals’voices vary with culture,language,gender,and personality.These variations in speaker-specific properties may hamper the performance of standard representations in downstream tasks such as speech emotion recognition(SER).This study demonstrates the significance of speaker-specific speech characteristics and how considering them can be leveraged to improve the performance of SER models.In the proposed approach,two wav2vec-based modules(a speaker-identification network and an emotion classification network)are trained with the Arcface loss.The speaker-identification network has a single attention block to encode an input audio waveform into a speaker-specific representation.The emotion classification network uses a wav2vec 2.0-backbone as well as four attention blocks to encode the same input audio waveform into an emotion representation.These two representations are then fused into a single vector representation containing emotion and speaker-specific information.Experimental results showed that the use of speaker-specific characteristics improves SER performance.Additionally,combining these with an angular marginal loss such as the Arcface loss improves intra-class compactness while increasing inter-class separability,as demonstrated by the plots of t-distributed stochastic neighbor embeddings(t-SNE).The proposed approach outperforms previous methods using similar training strategies,with a weighted accuracy(WA)of 72.14%and unweighted accuracy(UA)of 72.97%on the Interactive Emotional Dynamic Motion Capture(IEMOCAP)dataset.This demonstrates its effectiveness and potential to enhance human-machine interaction through more accurate emotion recognition in speech.
文摘Deep learning has been a catalyst for a transformative revo-lution in machine learning and computer vision in the past decade.Within these research domains,methods grounded in deep learning have exhibited exceptional performance across a spectrum of tasks.The success of deep learning methods can be attributed to their capability to derive potent representations from data,integral for a myriad of downstream applications.These representations encapsulate the intrinsic structure,fea-tures,or latent variables characterising the underlying statistics of visual data.Despite these achievements,the challenge per-sists in effectively conducting representation learning of visual data with deep models,particularly when confronted with vast and noisy datasets.This special issue is a dedicated platform for researchers worldwide to disseminate their latest,high-quality articles,aiming to enhance readers'comprehension of the principles,limitations,and diverse applications of repre-sentation learning in computer vision.
基金supported by the Applied Research Center of Artificial Intelligence,Wuhan College(Grant Number X2020113)the Wuhan College Research Project(Grant Number KYZ202009).
文摘User representation learning is crucial for capturing different user preferences,but it is also critical challenging because user intentions are latent and dispersed in complex and different patterns of user-generated data,and thus cannot be measured directly.Text-based data models can learn user representations by mining latent semantics,which is beneficial to enhancing the semantic function of user representations.However,these technologies only extract common features in historical records and cannot represent changes in user intentions.However,sequential feature can express the user’s interests and intentions that change time by time.But the sequential recommendation results based on the user representation of the item lack the interpretability of preference factors.To address these issues,we propose in this paper a novel model with Dual-Layer User Representation,named DLUR,where the user’s intention is learned based on two different layer representations.Specifically,the latent semantic layer adds an interactive layer based on Transformer to extract keywords and key sentences in the text and serve as a basis for interpretation.The sequence layer uses the Transformer model to encode the user’s preference intention to clarify changes in the user’s intention.Therefore,this dual-layer user mode is more comprehensive than a single text mode or sequence mode and can effectually improve the performance of recommendations.Our extensive experiments on five benchmark datasets demonstrate DLUR’s performance over state-of-the-art recommendation models.In addition,DLUR’s ability to explain recommendation results is also demonstrated through some specific cases.
文摘Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount importance in the emerging field of edge AI.One widely used testing method for this purpose is fuzz testing,which detects bugs by inputting random test cases into the target program.However,this process consumes significant time and resources.To improve the efficiency of compiler fuzz testing,it is common practice to utilize test case prioritization techniques.Some researchers use machine learning to predict the code coverage of test cases,aiming to maximize the test capability for the target compiler by increasing the overall predicted coverage of the test cases.Nevertheless,these methods can only forecast the code coverage of the compiler at a specific optimization level,potentially missing many optimization-related bugs.In this paper,we introduce C-CORE(short for Clustering by Code Representation),the first framework to prioritize test cases according to their code representations,which are derived directly from the source codes.This approach avoids being limited to specific compiler states and extends to a broader range of compiler bugs.Specifically,we first train a scaled pre-trained programming language model to capture as many common features as possible from the test cases generated by a fuzzer.Using this pre-trained model,we then train two downstream models:one for predicting the likelihood of triggering a bug and another for identifying code representations associated with bugs.Subsequently,we cluster the test cases according to their code representations and select the highest-scoring test case from each cluster as the high-quality test case.This reduction in redundant testing cases leads to time savings.Comprehensive evaluation results reveal that code representations are better at distinguishing test capabilities,and C-CORE significantly enhances testing efficiency.Across four datasets,C-CORE increases the average of the percentage of faults detected(APFD)value by 0.16 to 0.31 and reduces test time by over 50% in 46% of cases.When compared to the best results from approaches using predicted code coverage,C-CORE improves the APFD value by 1.1% to 12.3% and achieves an overall time-saving of 159.1%.
文摘Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class-specific information of the test sample,which is very important for classification.For deformable images such as human faces,pixels at the same location of different images of the same subject usually have different intensities.Therefore,extracting features and correctly classifying such deformable objects is very hard.Moreover,the lighting,attitude and occlusion cause more difficulty.Considering the problems and challenges listed above,a novel image representation and classification algorithm is proposed.First,the authors’algorithm generates virtual samples by a non-linear variation method.This method can effectively extract the low-frequency information of space-domain features of the original image,which is very useful for representing deformable objects.The combination of the original and virtual samples is more beneficial to improve the clas-sification performance and robustness of the algorithm.Thereby,the authors’algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme.The weighting coefficients in the score fusion scheme are set entirely automatically.Finally,the algorithm classifies the samples based on the final scores.The experimental results show that our method performs better classification than conventional sparse representation algorithms.
基金supported by the National Natural Science Foundation of China,with Fund Numbers 62272478,62102451the National Defense Science and Technology Independent Research Project(Intelligent Information Hiding Technology and Its Applications in a Certain Field)and Science and Technology Innovation Team Innovative Research Project“Research on Key Technologies for Intelligent Information Hiding”with Fund Number ZZKY20222102.
文摘Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit methods exist for accurately embedding ownership or copyright information in video data,the nascent NeRV framework has yet to address this issue comprehensively.In response,this paper introduces MarkINeRV,a scheme designed to embed watermarking information into video frames using an invertible neural network watermarking approach to protect the copyright of NeRV,which models the embedding and extraction of watermarks as a pair of inverse processes of a reversible network and employs the same network to achieve embedding and extraction of watermarks.It is just that the information flow is in the opposite direction.Additionally,a video frame quality enhancement module is incorporated to mitigate watermarking information losses in the rendering process and the possibility ofmalicious attacks during transmission,ensuring the accurate extraction of watermarking information through the invertible network’s inverse process.This paper evaluates the accuracy,robustness,and invisibility of MarkINeRV through multiple video datasets.The results demonstrate its efficacy in extracting watermarking information for copyright protection of NeRV.MarkINeRV represents a pioneering investigation into copyright issues surrounding NeRV.
基金funded by the Major Science and Technology Projects in Henan Province,China,Grant No.221100210600.
文摘Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations.However,due to limitations in code representation and neural network design,the validity and practicality of the model still need to be improved.Additionally,due to differences in programming languages,most methods lack cross-language detection generality.To address these issues,in this paper,we analyze the shortcomings of previous code representations and neural networks.We propose a novel hierarchical code representation that combines Concrete Syntax Trees(CST)with Program Dependence Graphs(PDG).Furthermore,we introduce a Tree-Graph-Gated-Attention(TGGA)network based on gated recurrent units and attention mechanisms to build a Hierarchical Code Representation learning-based Vulnerability Detection(HCRVD)system.This system enables cross-language vulnerability detection at the function-level.The experiments show that HCRVD surpasses many competitors in vulnerability detection capabilities.It benefits from the hierarchical code representation learning method,and outperforms baseline in cross-language vulnerability detection by 9.772%and 11.819%in the C/C++and Java datasets,respectively.Moreover,HCRVD has certain ability to detect vulnerabilities in unknown programming languages and is useful in real open-source projects.HCRVD shows good validity,generality and practicality.
基金supported by the Science and Technology Development Fund of Macao SAR(FDCT0128/2022/A,0020/2023/RIB1,0111/2023/AFJ,005/2022/ALC)the Shandong Natural Science Foundation of China(ZR2020MA004)+2 种基金the National Natural Science Foundation of China(12071272)the MYRG 2018-00168-FSTZhejiang Provincial Natural Science Foundation of China(LQ23A010014).
文摘This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions.
文摘Based on Yan Fu’s translation norms of“faithfulness,expressiveness,and elegance”and Liu Miqing’s concept of aesthetic representation in translation,the present study employed a combined method of qualitative and quantitative analysis to investigate the linguistic styles employed by Zhu Ziqing in his renowned prose Beiying.Then,using relevant corpora and self-designed Python software,we investigated whether Zhang Peiji,as a translator,has successfully reproduced the simplistic,emotional,and realistic linguistic characteristics in Zhu Ziqing’s prose from the perspectives of“faithfulness,expressiveness,and elegance.”The findings of the research indicate that by employing a dynamic imitative translation approach,Zhang Peiji has successfully enhanced the linguistic aesthetic qualities of the source text,striving to reflect the distinctive linguistic style of Zhu Ziqing.
基金funded by the State Grid Jilin Economic Research Institute’s 2022 Practical Re-Search Project on the Construction of Long-Term Power Supply Guarantee Mechanism in Provincial Capital Cities under the New Situation,Grant Number SGJLJY00GPJS2200041.
文摘This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sparse representation and entropy weight method.Three different electrical quantities are selected as observations in the compressed sensing algorithm.The entropy weighting method is employed to calculate the weights of different observations based on their relative disturbance levels.Subsequently,by leveraging the topological information of the power system and pre-designing an overcomplete dictionary of disturbances based on the corresponding system parameter variations caused by disturbances,an improved Joint Generalized Orthogonal Matching Pursuit(J-GOMP)algorithm is utilized for reconstruction.The reconstructed sparse vectors are divided into three parts.If at least two parts have consistent node identifiers,the node is identified as the disturbance node.If the node identifiers in all three parts are inconsistent,further analysis is conducted considering the weights to determine the disturbance node.Simulation results based on the IEEE 39-bus system model demonstrate that the proposed method,utilizing electrical quantity information from only 8 measurement points,effectively locates disturbance positions and is applicable to various disturbance types with strong noise resistance.
基金supported by the National Natural Science Foundation of China(Nos.62006001,62372001)the Natural Science Foundation of Chongqing City(Grant No.CSTC2021JCYJ-MSXMX0002).
文摘Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.
基金Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586)。
文摘To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.