期刊文献+
共找到193,862篇文章
< 1 2 250 >
每页显示 20 50 100
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:3
1
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 low-temperature performance Anode materials Microstructural regulations Surface modifications
下载PDF
Low-temperature characteristicsof rubbers and performance testsof type 120 emergencyvalve diaphragms 被引量:1
2
作者 Ming Gao Anhui Pan +5 位作者 Yi Huang Jiaqi Wang Yan Zhang Xiao Xie Huanre Han Yinghua Jia 《Railway Sciences》 2024年第1期47-58,共12页
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista... Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms. 展开更多
关键词 Natural rubber Chloroprene rubber low-temperature characteristic 120 emergency valve DIAPHRAGM
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
3
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Advances in sodium-ion batteries at low-temperature: Challenges and strategies
4
作者 Haoran Bai Xiaohui Zhu +3 位作者 Huaisheng Ao Guangyu He Hai Xiao Yinjuan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期518-539,I0012,共23页
With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a h... With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs. 展开更多
关键词 low-temperature Sodium-ion batteries Reaction kinetics Cycle stability Safety concerns of Sodium-ion batteries
下载PDF
Temperature inversion enables superior stability for low-temperature Zn-ion batteries
5
作者 Fu-Da Yu Zhe-Jian Yi +10 位作者 Rui-Yang Li Wei-Hao Lin Jie Chen Xiao-Yue Chen Yi-Ming Xie Ji-Huai Wu Zhang Lan Lan-Fang Que Bao-Sheng Liu Hao Luo Zhen-Bo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期245-253,共9页
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ... It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems. 展开更多
关键词 Aqueous Zn-ion batteries low-temperature performance Opposite temperature dependence Zndendrite growth Vanadium dissolution
下载PDF
Modulating the Electrolyte Inner Solvation Structure via Low Polarity Co-solvent for Low-Temperature Aqueous Zinc-Ion Batteries
6
作者 Yongchao Kang Feng Zhang +6 位作者 Houzhen Li Wangran Wei Huitong Dong Hao Chen Yuanhua Sang Hong Liu Shuhua Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期104-113,共10页
Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature perf... Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature performance.Herein,a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO_(4))_(2).The diglyme disrupts the hydrogenbonding network of water and lowers the freezing point of the electrolyte to-105℃.The designed electrolyte achieves ionic conductivity up to16.18 mS cm^(-1)at-45℃.The diglyme and ClO_(4)^(-)reconfigure the solvated structure of Zn^(2+),which is more favorable for the desolvation of Zn^(2+)at low temperatures.In addition,the diglyme effectively suppresses the dendrites,hydrogen evolution reaction,and by-products of the zinc anode,improving the cycle stability of the battery.At-20℃,a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm^(-2)and 1 mA h cm^(-2),and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10000 times.This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries. 展开更多
关键词 aqueous zinc-ion batteries high performance inner solvation structure low polarity co-solvent low-temperature electrolyte
下载PDF
Impact of Low-temperature Storage on Volatile Flavor Compounds in Prepared Pork Products
7
作者 Xiulian WANG Jiamin ZHANG +3 位作者 Ting BAI Wei WANG Kaihong YANG Lili JI 《Agricultural Biotechnology》 2024年第4期70-75,81,共7页
[Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18... [Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18℃.The volatile flavor compounds of prepared pork were determined by solid-phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS)at days 0,7,14,21 and 28,and relative odor activity value(OAV),principal component analysis(PCA)and cluster analysis(CA)were combined to analyze changes in volatile flavor compounds of prepared pork during storage.[Results]The total number of volatile flavor compounds gradually decreased with the prolongation of the storage period,and OAV analysis identified 22 key flavor compounds(OAV≥1).The results of PCA and CA showed that 2-methyl-1-butanol,1-octen-3-ol,linalool,cineole,hexanal and nonanal were the main key flavor components,and the degree of flavor degradation was low under both superchilling and freezing conditions.After 28 days of storage,the alcohol content in the chilling group was significantly higher than other two groups,and the overall content of volatile flavor compounds was also significantly higher than other two groups,indicating that the-4℃chilling storage was more favorable for maintaining the overall flavor of prepared pork.[Conclusions]This study provides a theoretical basis for finding a better storage method for prepared meat products. 展开更多
关键词 low-temperature storage Prepared pork Volatile flavor component Principal component analysis Cluster analysis
下载PDF
Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO_(2)
8
作者 Xu Zhao Naitao Gao +2 位作者 Shengcheng Wu Shaozhen Li Sujuan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期786-794,共9页
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d... CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs. 展开更多
关键词 polyethylene oxide-modified TiO_(2) film low-temperature process CsPbI_(2)Br-based all-inorganic perovskite solar cells photo-voltaic performance
下载PDF
Ca and Sr co-doping induced oxygen vacancies in 3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts for boosting low-temperature oxidative coupling of methane
9
作者 Tongtong Wu Yuechang Wei +5 位作者 Jing Xiong Yitao Yang Zhenpeng Wang Dawei Han Zhen Zhao Jian Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期331-344,共14页
It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(... It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application. 展开更多
关键词 3DOM catalysts Ca ions Sr ions low-temperature oxidative couplingof methane Oxygen vacancies O_(2)^(-) species
下载PDF
Effect of low-temperature tempering on the mechanical properties of cold-rolled martensitic steel
10
作者 ZHU Xiaodong XUE Peng LI Wei 《Baosteel Technical Research》 CAS 2023年第1期11-16,共6页
Cold-rolled martensitic steel is an important type of advanced high-strength steel for automobile production.With martensite as its primary microstructure constituent, martensitic steel possesses exceptional high stre... Cold-rolled martensitic steel is an important type of advanced high-strength steel for automobile production.With martensite as its primary microstructure constituent, martensitic steel possesses exceptional high strength despite its low alloy content.As the strength of cold-rolled martensitic steel increases, the martensite and carbon content also increases, leading to a decrease in bending properties and toughness.In this paper, the effect of various tempering parameters on the bending property and impact toughness of a quenched cold-rolled martensitic steel sheet was studied.It is found that after quenching, the ductility and impact toughness of the experimental steel are improved using low-temperature heat treatment.The optimal tempering conditions for ductility and toughness are analyzed. 展开更多
关键词 water quenching TEMPERING ultrahigh strength martensitic steel sheet
下载PDF
Effect of normalizing cooling process on microstructure and precipitates in low-temperature silicon steel 被引量:7
11
作者 李慧 冯运莉 +2 位作者 宋孟 梁精龙 苍大强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期770-776,共7页
Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared wi... Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared with the hot-rolled plate by optical microscopy (OM), transmission electron microscopy (TEM), and energy dispersive spectrometry (EDS). The results show that, the surface microstructure is uniform, the proportion of recrystallization in matrix increases, and the banding textures are narrowed; the precipitates, whose quantity in normalized plate is more than that in hot-rolled plate greatly, are mainly A1N, MnS, composite precipitates (Cu,Mn)S and so on. Normalizing technology with a temperature of 1120 ℃, holding for 3 min, and a two-stage cooling is a most advantaged method to obtain oriented silicon steel with sharper Goss texture and higher magnetic properties, owing to the uniform surface microstructures and the obvious inhomogeneity of microstructures along the thickness. The normalizing technology with the two-stage cooling is the optimum process, which can generate more fine precipitates dispersed over the matrix, and be beneficial for finished products to get higher magnetic properties. 展开更多
关键词 low temperature grain-oriented silicon steel normalizing cooling process MICROSTRUCTURE PRECIPITATE magnetic property
下载PDF
Perspective on low-temperature electrolytes for LiFePO 4-based lithium-ion batteries 被引量:4
12
作者 Xianglong Chen Yudong Gong +3 位作者 Xiu Li Feng Zhan Xinhua Liu Jianmin Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期1-13,共13页
The olivine-type lithium iron phosphate(LiFePO_(4))cathode material is promising and widely used as a high-performance lithium-ion battery cathode material in commercial batteries due to its low cost,environmental fri... The olivine-type lithium iron phosphate(LiFePO_(4))cathode material is promising and widely used as a high-performance lithium-ion battery cathode material in commercial batteries due to its low cost,environmental friendliness,and high safety.At present,LiFePO_(4)/C sec-ondary batteries are widely used for electronic products,automotive power batteries,and other occasion-related applications with good thermal stability,stable cycle performance,and low room-temperature self-discharge rate.However,LiFePO_(4)-based battery applications are seriously limited when they are operated in a cold climate.This outcome is due to a considerable decrease in Li+transport capabilities within the elec-trode,particularly leading to a dramatic decrease in the electrochemical capacity and power performance of the electrolyte.Therefore,the design of low-temperature electrolytes is important for the further commercial application of LiFePO_(4) batteries.This paper reviews the key factors for the poor low-temperature performance of LiFePO_(4)-based batteries and the research progress of low-temperature electrolytes.Spe-cial attention is paid to electrolyte components,including lithium salts,cosolvents,additives,and the development of new electrolytes.The factors affecting the anode are also analyzed.Finally,according to the current research progress,some viewpoints are summarized to provide suitable modification methods and research suggestions for improving the practicability of LiFePO_(4)/C commercial batteries at low temperat-ures in the future. 展开更多
关键词 lithium-ion batteries LiFePO_(4) electrolytes low-temperature electrochemical performance
下载PDF
Low-Temperature Carbonized Nitrogen-Doped Hard Carbon Nanofiber Toward High-Performance Sodium-Ion Capacitors 被引量:4
13
作者 Congkai Sun Xiong Zhang +7 位作者 Yabin An Chen Li Lei Wang Xiaohu Zhang Xianzhong Sun Kai Wang Haitao Zhang Yanwei Ma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期129-136,共8页
Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nit... Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nitrogen-doped hard carbon nanofibers(NHCNFs)were prepared by a lowtemperature carbonization treatment assisted with electrospinning technology.Density functional theory analysis elucidates the incorporation of nitrogen heteroatoms with various chemical states into carbon matrix would significantly alter the total electronic configurations,leading to the robust adsorption and efficient diffusion of Na atoms on electrode interface.The obtained material carbonized at 600°C(NHCNF-600)presented a reversible specific capacity of 191.0 mAh g^(−1)and no capacity decay after 200 cycles at 1 A g^(−1).It was found that the sodium-intercalated degree had a correlation with the electrochemical impedance.A sodium-intercalated potential of 0.2 V was adopted to lower the electrochemical impedance.The constructed sodium-ion capacitor with activated carbon cathode and presodiated NHCNF-600 anode can present an energy power density of 82.1 Wh kg^(−1)and a power density of 7.0 kW kg^(−1). 展开更多
关键词 electrochemical presodiation low-temperature carbonization nitrogen-doped hard carbon nanofibers sodium-ion capacitors
下载PDF
Involvement of long non-coding RNAs in pear fruit senescence under high-and low-temperature conditions 被引量:4
14
作者 Yuhang Zhou Xueping Wang +3 位作者 Kaijie Qi Jianping Bao Shaoling Zhang Chao Gu 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第2期224-236,共13页
Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,... Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,may also be involved in temperature-affected fruit senescence.Based on the transcriptome and microRNA sequencings,in this study,3330 lncRNAs were isolated from Pyrus pyrifolia fruit.Of these lncRNAs,2060 and 537 were responsive to high-and low-temperature conditions,respectively.Of these differentially expressed lncRNAs,82 and 24 correlated to the mRNAs involved in fruit senescence under high-and low-temperature conditions,respectively.Moreover,three lncRNAs were predicted to be competing endogenous RNAs(ceRNAs)that interact with the microRNAs involved in fruit senescence,while one and two ceRNAs were involved in fruit senescence under high-and low-temperature conditions,respectively.A dual-luciferase assay showed that the interaction of an lncRNA with a microRNA disrupts the action of the microRNA on the expression of its target mRNA(s).Furthermore,four alternative splicing-derived lncRNAs interacted with miR172i homologies(Novel_88 and Novel_69)to relieve the repressed expression of their target and produce an miR172i precursor.Correlation analysis of microRNA expression suggested that Novel_69 is likely involved in the cleavage of the pre-miR172i hairpin to generate mature miR172i.Taken together,lncRNAs are involved in pear fruit senescence under high-or low-temperature conditions through ceRNAs and the production of microRNA. 展开更多
关键词 Pyrus pyrifolia Long non-coding RNA(lncRNA) Fruit senescence High-temperature low-temperature lncRNA-microRNA-mRNA interaction
下载PDF
Low-temperatures synthesis of CuS nanospheres as cathode material for magnesium second batteries 被引量:2
15
作者 Qin Zhang Yaobo Hu +1 位作者 Jun Wang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期192-200,共9页
Rechargeable magnesium batteries(RMBs),as one of the most promising candidates for efficient energy storage devices with high energy,power density and high safety,have attracted increasing attention.However,searching ... Rechargeable magnesium batteries(RMBs),as one of the most promising candidates for efficient energy storage devices with high energy,power density and high safety,have attracted increasing attention.However,searching for suitable cathode materials with fast diffusion kinetics and exploring their magnesium storage mechanisms remains a great challenge.Cu S submicron spheres,made by a facile low-temperature synthesis strategy,were applied as the high-performance cathode for RMBs in this work,which can deliver a high specific capacity of 396mAh g^(-1)at 20 mA g^(-1) and a remarkable rate capacity of 250 m Ah g^(-1)at 1000 mA g^(-1).The excellent rate performance can be assigned to the nano needle-like particles on the surface of Cu S submicron spheres,which can facilitate the diffusion kinetics of Mg^(2+).Further storage mechanism investigations illustrate that the Cu S cathodes experience a two-step conversion reaction controlled by diffusion during the electrochemical reaction process.This work could make a contribution to the study of the enhancement of diffusion kinetics of Mg2+and the reaction mechanism of RMBs. 展开更多
关键词 Magnesium second batteries Cathode material CUS Submicron spheres low-temperature synthesis.
下载PDF
Seamlessly Merging the Capacity of P into Sb at Same Voltage with Maintained Superior Cycle Stability and Low-temperature Performance for Li-ion Batteries 被引量:1
16
作者 Yaqing Wei Jun He +8 位作者 Jie Zhang Mingyang Ou Yanpeng Guo Jiajun Chen Cheng Zeng Jia Xu Jiantao Han Tianyou Zhai Huiqiao Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期195-201,共7页
Among the alloying-type anodes,elemental Sb possesses the suitable yet safe plateau,simple lithiation pathway,small voltage polarization,high conductivity,and superior cycle stability.However,challenge is that its int... Among the alloying-type anodes,elemental Sb possesses the suitable yet safe plateau,simple lithiation pathway,small voltage polarization,high conductivity,and superior cycle stability.However,challenge is that its intrinsic capacity is rather low(660 mAh g^(-1)),<1/6 of silicon.Herein,we propose a seamless integration strategy by merging the voltage and capacity of phosphorus and antimony into a solid solution alloy.Interestingly,the enlistment of P is found greatly enlarge the capacity from 660 to 993 mAh g^(-1) for such Sb_(30)P_(30) solid solution,while maintaining a single and stable discharge plateau(~0.79 V)similar to elemental Sb.Various experimental characterizations including XPS,PDF,Raman,and EDS mapping reveal that in such a material the P and Sb atoms have interacted with each other to form a homogenous solid solution alloy,rather than a simple mixing of the two substances.Thus,the Sb_(30)P_(30) exhibits superior rate performances(807 mAh g^(-1) at 5000 mA g^(-1))and cyclability(821 mAh g^(-1) remained after 300 cycles).Furthermore,such Sb_(60-x)P_(x) alloys can even deliver 621 mAh g^(-1) at30℃,which can be served as the alternative anode materials for high-energy and low-temperature batteries.This unique seamless integration strategy based on solid solution chemistry can be easily leveraged to manipulate the capacity of other electrode materials at similar voltage. 展开更多
关键词 alloy anode ANTIMONY lithium-ion batteries low-temperature performance phosphorus
下载PDF
Screening non-noble metal oxides to boost the low-temperature combustion of polyethylene waste in air 被引量:1
17
作者 Xinyao Sun Liu Zhao +5 位作者 Xu Hou Hao Zhou Huimin Qiao Chenggong Song Jing Huang Enxian Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期155-162,共8页
Globally,the efficient utilization of polymer wastes is one of the most important issues for current sustainable development topics.Herein,a green and efficient low-temperature combustion approach is proposed to deal ... Globally,the efficient utilization of polymer wastes is one of the most important issues for current sustainable development topics.Herein,a green and efficient low-temperature combustion approach is proposed to deal with polymer wastes and recover heat energy,simultaneously alleviating the environment and energy crisis.Non-noble metal oxides(Al_(2)O_(3),Fe_(2)O_(3),NiO_(2),ZrO_(2),La_(2)O_(3)and CeO_(2)) were prepared,characterized and screened to boost the low-temperature combustion of polyethylene waste at 300℃ in air.The mass change,heat release and CO_(x) formation were studied in details and employed to evaluate the combustion rate and efficiency.It was found that CeO_(2)significantly enhanced the combustion rate and efficiency,which was respectively 2 and 7 times that of non-catalytic case.An interesting phenomenon was observed that the catalytic performance of CeO_(2) in polyethylene low-temperature combustion was significantly improved by the 7-day storage in the room environment or water treatment.XPS analysis confirmed the co-existence of Ce^(3+) and Ce^(4+) in CeO_(2),and the 7-day storage and water treatment promoted the amount of Ce^(3+),which facilitated the formation of the oxygen vacancies.That may be the reason why CeO_(2) exhibited excellent catalytic performance in polyethylene low-temperature combustion. 展开更多
关键词 Polymer wastes low-temperature combustion Metal oxides CeO_(2)
下载PDF
Twice-split phosphorus application alleviates low-temperature impacts on wheat by improved spikelet development and setting 被引量:1
18
作者 XU Hui HOU Kuo-yang +7 位作者 FANG Hao LIU Qian-qian WU Qiu LIN Fei-fei DENG Rui ZHANG Lin-jie CHEN Xiang LI Jin-cai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3667-3680,共14页
Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the an... Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the anther interval stage)has resulted in significant yield losses of winter wheat.This study attempts to develop an economical,feasible,and efficient cultivation technique for improving the low-temperature(LT)resistance of wheat by exploring the effects of twice-split phosphorus application(TSPA)on wheat antioxidant characteristics and carbon and nitrogen metabolism physiology under LT treatment at the anther interval stage using Yannong 19 as the experimental material.The treatments consisted of traditional phosphorus application and TSPA,followed by a-4℃ LT treatment and natural temperature(NT)control at the anther interval stage.Our analyses showed that,compared with the traditional application,the TSPA increased the net photosynthetic rate(P_(n)),stomatal conductance(Gs),and transpiration rate(T_(r))of leaves and reduced the intercellular carbon dioxide concentration(C_(i)).The activity of carbon and nitrogen metabolism enzymes in the young wheat spikes was also increased by the TSPA,which promoted the accumulation of soluble sugar(SS),sucrose(SUC),soluble protein(SP),and proline(Pro)in young wheat spike and reduced the toxicity of malondialdehyde(MDA).Due to the improved organic nutrition for reproductive development,the young wheat spikes exhibited enhanced LT resistance,which reduced the sterile spikelet number(SSN)per spike by 11.8%and increased the spikelet setting rate(SSR)and final yield by 6.0 and 8.4%,respectively,compared to the traditional application.The positive effects of split phosphorus application became more pronounced when the LT treatment was prolonged. 展开更多
关键词 optimizing phosphorus application low-temperature stress carbon and nitrogen metabolism young spike development WHEAT
下载PDF
Development and prospects of molten steel deoxidation in steelmaking process 被引量:2
19
作者 Zhongliang Wang Yanping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期18-32,共15页
In the long traditional process of steelmaking,excess oxygen is blown into the converter,and alloying elements are used for deoxidation.This inevitably results in excessive deoxidation of products remaining within the... In the long traditional process of steelmaking,excess oxygen is blown into the converter,and alloying elements are used for deoxidation.This inevitably results in excessive deoxidation of products remaining within the steel liquid,affecting the cleanliness of the steel.With the increasing requirements for steel performance,reducing the oxygen content in the steel liquid and ensuring its high cleanliness is necessary.After more than a hundred years of development,the total oxygen content in steel has been reduced from approximately 100×10^(-6)to approximately 10×10^(-6),and it can be controlled below 5×10^(-6)in some steel grades.A relatively stable and mature deoxidation technology has been formed,but further reducing the oxygen content in steel is no longer significant for improving steel quality.Our research team developed a deoxidation technology for bearing steel by optimizing the entire conventional process.The technology combines silicon–manganese predeoxidation,ladle furnace diffusion deoxidation,and vacuum final deoxidation.We successfully conducted industrial experiments and produced interstitial-free steel with natural decarbonization predeoxidation.Non-aluminum deoxidation was found to control the oxygen content in bearing steel to between 4×10^(-6) and 8×10^(-6),altering the type of inclusions,eliminating large particle Ds-type inclusions,improving the flowability of the steel liquid,and deriving a higher fatigue life.The natural decarbonization predeoxidation of interstitial-free steel reduced aluminum consumption and production costs and significantly improved the quality of cast billets. 展开更多
关键词 steel deoxidation DEOXIDIZER metallurgical equipment bearing steel IF steel
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
20
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部