期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Quantification of the concrete freeze–thaw environment across the Qinghai–Tibet Plateau based on machine learning algorithms
1
作者 QIN Yanhui MA Haoyuan +3 位作者 ZHANG Lele YIN Jinshuai ZHENG Xionghui LI Shuo 《Journal of Mountain Science》 SCIE CSCD 2024年第1期322-334,共13页
The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering ma... The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP. 展开更多
关键词 Freeze–thaw cycles Quantification machine learning algorithms Qinghai–Tibet Plateau CONCRETE
原文传递
Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin,Asir Region,Saudi Arabia 被引量:17
2
作者 Ahmed Mohamed Youssef Hamid Reza Pourghasemi 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期639-655,共17页
The current study aimed at evaluating the capabilities of seven advanced machine learning techniques(MLTs),including,Support Vector Machine(SVM),Random Forest(RF),Multivariate Adaptive Regression Spline(MARS),Artifici... The current study aimed at evaluating the capabilities of seven advanced machine learning techniques(MLTs),including,Support Vector Machine(SVM),Random Forest(RF),Multivariate Adaptive Regression Spline(MARS),Artificial Neural Network(ANN),Quadratic Discriminant Analysis(QDA),Linear Discriminant Analysis(LDA),and Naive Bayes(NB),for landslide susceptibility modeling and comparison of their performances.Coupling machine learning algorithms with spatial data types for landslide susceptibility mapping is a vitally important issue.This study was carried out using GIS and R open source software at Abha Basin,Asir Region,Saudi Arabia.First,a total of 243 landslide locations were identified at Abha Basin to prepare the landslide inventory map using different data sources.All the landslide areas were randomly separated into two groups with a ratio of 70%for training and 30%for validating purposes.Twelve landslide-variables were generated for landslide susceptibility modeling,which include altitude,lithology,distance to faults,normalized difference vegetation index(NDVI),landuse/landcover(LULC),distance to roads,slope angle,distance to streams,profile curvature,plan curvature,slope length(LS),and slope-aspect.The area under curve(AUC-ROC)approach has been applied to evaluate,validate,and compare the MLTs performance.The results indicated that AUC values for seven MLTs range from 89.0%for QDA to 95.1%for RF.Our findings showed that the RF(AUC=95.1%)and LDA(AUC=941.7%)have produced the best performances in comparison to other MLTs.The outcome of this study and the landslide susceptibility maps would be useful for environmental protection. 展开更多
关键词 Landslide susceptibility machine learning algorithms Variables importance Saudi Arabia
下载PDF
Use of machine learning algorithms to assess the state of rockburst hazard in underground coal mine openings 被引量:10
3
作者 Lukasz Wojtecki Sebastian Iwaszenko +2 位作者 Derek B.Apel Mirosawa Bukowska Janusz Makówka 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期703-713,共11页
The risk of rockbursts is one of the main threats in hard coal mines. Compared to other underground mines, the number of factors contributing to the rockburst at underground coal mines is much greater.Factors such as ... The risk of rockbursts is one of the main threats in hard coal mines. Compared to other underground mines, the number of factors contributing to the rockburst at underground coal mines is much greater.Factors such as the coal seam tendency to rockbursts, the thickness of the coal seam, and the stress level in the seam have to be considered, but also the entire coal seam-surrounding rock system has to be evaluated when trying to predict the rockbursts. However, in hard coal mines, there are stroke or stress-stroke rockbursts in which the fracture of a thick layer of sandstone plays an essential role in predicting rockbursts. The occurrence of rockbursts in coal mines is complex, and their prediction is even more difficult than in other mines. In recent years, the interest in machine learning algorithms for solving complex nonlinear problems has increased, which also applies to geosciences. This study attempts to use machine learning algorithms, i.e. neural network, decision tree, random forest, gradient boosting, and extreme gradient boosting(XGB), to assess the rockburst hazard of an active hard coal mine in the Upper Silesian Coal Basin. The rock mass bursting tendency index WTGthat describes the tendency of the seam-surrounding rock system to rockbursts and the anomaly of the vertical stress component were applied for this purpose. Especially, the decision tree and neural network models were proved to be effective in correctly distinguishing rockbursts from tremors, after which the excavation was not damaged. On average, these models correctly classified about 80% of the rockbursts in the testing datasets. 展开更多
关键词 Hard coal mining Rockburst hazard machine learning algorithms
下载PDF
Predicting the daily return direction of the stock market using hybrid machine learning algorithms 被引量:10
4
作者 Xiao Zhong David Enke 《Financial Innovation》 2019年第1期435-454,共20页
Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on f... Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on forecasting daily stock market returns,especially when using powerful machine learning techniques,such as deep neural networks(DNNs),to perform the analyses.DNNs employ various deep learning algorithms based on the combination of network structure,activation function,and model parameters,with their performance depending on the format of the data representation.This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF(ticker symbol:SPY)based on 60 financial and economic features.DNNs and traditional artificial neural networks(ANNs)are then deployed over the entire preprocessed but untransformed dataset,along with two datasets transformed via principal component analysis(PCA),to predict the daily direction of future stock market index returns.While controlling for overfitting,a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000.Moreover,a set of hypothesis testing procedures are implemented on the classification,and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset,as well as several other hybrid machine learning algorithms.In addition,the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested,including in a comparison against two standard benchmarks. 展开更多
关键词 Daily stock return forecasting Return direction classification Data representation Hybrid machine learning algorithms Deep neural networks(DNNs) Trading strategies
下载PDF
Recent innovation in benchmark rates (BMR):evidence from influential factors on Turkish Lira Overnight Reference Interest Rate with machine learning algorithms 被引量:2
5
作者 Öer Depren Mustafa Tevfik Kartal Serpil KılıçDepren 《Financial Innovation》 2021年第1期942-961,共20页
Some countries have announced national benchmark rates,while others have been working on the recent trend in which the London Interbank Offered Rate will be retired at the end of 2021.Considering that Turkey announced... Some countries have announced national benchmark rates,while others have been working on the recent trend in which the London Interbank Offered Rate will be retired at the end of 2021.Considering that Turkey announced the Turkish Lira Overnight Reference Interest Rate(TLREF),this study examines the determinants of TLREF.In this context,three global determinants,five country-level macroeconomic determinants,and the COVID-19 pandemic are considered by using daily data between December 28,2018,and December 31,2020,by performing machine learning algorithms and Ordinary Least Square.The empirical results show that(1)the most significant determinant is the amount of securities bought by Central Banks;(2)country-level macroeconomic factors have a higher impact whereas global factors are less important,and the pandemic does not have a significant effect;(3)Random Forest is the most accurate prediction model.Taking action by considering the study’s findings can help support economic growth by achieving low-level benchmark rates. 展开更多
关键词 Benchmark rate Determinants machine learning algorithms TURKEY
下载PDF
Medical Data Clustering and Classification Using TLBO and Machine Learning Algorithms 被引量:1
6
作者 Ashutosh Kumar Dubey Umesh Gupta Sonal Jain 《Computers, Materials & Continua》 SCIE EI 2022年第3期4523-4543,共21页
This study aims to empirically analyze teaching-learning-based optimization(TLBO)and machine learning algorithms using k-means and fuzzy c-means(FCM)algorithms for their individual performance evaluation in terms of c... This study aims to empirically analyze teaching-learning-based optimization(TLBO)and machine learning algorithms using k-means and fuzzy c-means(FCM)algorithms for their individual performance evaluation in terms of clustering and classification.In the first phase,the clustering(k-means and FCM)algorithms were employed independently and the clustering accuracy was evaluated using different computationalmeasures.During the second phase,the non-clustered data obtained from the first phase were preprocessed with TLBO.TLBO was performed using k-means(TLBO-KM)and FCM(TLBO-FCM)(TLBO-KM/FCM)algorithms.The objective function was determined by considering both minimization and maximization criteria.Non-clustered data obtained from the first phase were further utilized and fed as input for threshold optimization.Five benchmark datasets were considered from theUniversity of California,Irvine(UCI)Machine Learning Repository for comparative study and experimentation.These are breast cancer Wisconsin(BCW),Pima Indians Diabetes,Heart-Statlog,Hepatitis,and Cleveland Heart Disease datasets.The combined average accuracy obtained collectively is approximately 99.4%in case of TLBO-KM and 98.6%in case of TLBOFCM.This approach is also capable of finding the dominating attributes.The findings indicate that TLBO-KM/FCM,considering different computational measures,perform well on the non-clustered data where k-means and FCM,if employed independently,fail to provide significant results.Evaluating different feature sets,the TLBO-KM/FCM and SVM(GS)clearly outperformed all other classifiers in terms of sensitivity,specificity and accuracy.TLBOKM/FCM attained the highest average sensitivity(98.7%),highest average specificity(98.4%)and highest average accuracy(99.4%)for 10-fold cross validation with different test data. 展开更多
关键词 K-MEANS FCM TLBO TLBO-KM TLBO-FCM TLBO-KM/FCM machine learning algorithms
下载PDF
Predicting Future Cryptocurrency Prices Using Machine Learning Algorithms
7
作者 Vaibhav Saha 《Journal of Data Analysis and Information Processing》 2023年第4期400-419,共20页
Cryptocurrency price prediction has garnered significant attention due to the growing importance of digital assets in the financial landscape. This paper presents a comprehensive study on predicting future cryptocurre... Cryptocurrency price prediction has garnered significant attention due to the growing importance of digital assets in the financial landscape. This paper presents a comprehensive study on predicting future cryptocurrency prices using machine learning algorithms. Open-source historical data from various cryptocurrency exchanges is utilized. Interpolation techniques are employed to handle missing data, ensuring the completeness and reliability of the dataset. Four technical indicators are selected as features for prediction. The study explores the application of five machine learning algorithms to capture the complex patterns in the highly volatile cryptocurrency market. The findings demonstrate the strengths and limitations of the different approaches, highlighting the significance of feature engineering and algorithm selection in achieving accurate cryptocurrency price predictions. The research contributes valuable insights into the dynamic and rapidly evolving field of cryptocurrency price prediction, assisting investors and traders in making informed decisions amidst the challenges posed by the cryptocurrency market. 展开更多
关键词 Cryptocurrency Price Prediction machine learning algorithms Feature Engineering Performance Metrics
下载PDF
Gully erosion spatial modelling: Role of machine learning algorithms in selection of the best controlling factors and modelling process 被引量:6
8
作者 Hamid Reza Pourghasemi Nitheshnirmal Sadhasivam +1 位作者 Narges Kariminejad Adrian L.Collins 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第6期2207-2219,共13页
This investigation assessed the efficacy of 10 widely used machine learning algorithms(MLA)comprising the least absolute shrinkage and selection operator(LASSO),generalized linear model(GLM),stepwise generalized linea... This investigation assessed the efficacy of 10 widely used machine learning algorithms(MLA)comprising the least absolute shrinkage and selection operator(LASSO),generalized linear model(GLM),stepwise generalized linear model(SGLM),elastic net(ENET),partial least square(PLS),ridge regression,support vector machine(SVM),classification and regression trees(CART),bagged CART,and random forest(RF)for gully erosion susceptibility mapping(GESM)in Iran.The location of 462 previously existing gully erosion sites were mapped through widespread field investigations,of which 70%(323)and 30%(139)of observations were arbitrarily divided for algorithm calibration and validation.Twelve controlling factors for gully erosion,namely,soil texture,annual mean rainfall,digital elevation model(DEM),drainage density,slope,lithology,topographic wetness index(TWI),distance from rivers,aspect,distance from roads,plan curvature,and profile curvature were ranked in terms of their importance using each MLA.The MLA were compared using a training dataset for gully erosion and statistical measures such as RMSE(root mean square error),MAE(mean absolute error),and R-squared.Based on the comparisons among MLA,the RF algorithm exhibited the minimum RMSE and MAE and the maximum value of R-squared,and was therefore selected as the best model.The variable importance evaluation using the RF model revealed that distance from rivers had the highest significance in influencing the occurrence of gully erosion whereas plan curvature had the least importance.According to the GESM generated using RF,most of the study area is predicted to have a low(53.72%)or moderate(29.65%)susceptibility to gully erosion,whereas only a small area is identified to have a high(12.56%)or very high(4.07%)susceptibility.The outcome generated by RF model is validated using the ROC(Receiver Operating Characteristics)curve approach,which returned an area under the curve(AUC)of 0.985,proving the excellent forecasting ability of the model.The GESM prepared using the RF algorithm can aid decision-makers in targeting remedial actions for minimizing the damage caused by gully erosion. 展开更多
关键词 machine learning algorithm Gully erosion Random forest Controlling factors Variable importance
下载PDF
Prediction of room temperature in Trombe solar wall systems using machine learning algorithms
9
作者 Seyed Hossein Hashemi Zahra Besharati +2 位作者 Seyed Abdolrasoul Hashemi Seyed Ali Hashemi Aziz Babapoor 《Energy Storage and Saving》 2024年第4期243-249,共7页
A Trombe wall-heating system is used to absorb solar energy to heat buildings.Different parameters affect the system performance for optimal heating.This study evaluated the performance of four machine learning algori... A Trombe wall-heating system is used to absorb solar energy to heat buildings.Different parameters affect the system performance for optimal heating.This study evaluated the performance of four machine learning algorithms—linear regression,k-nearest neighbors,random forest,and decision tree—for predicting the room temperature in a Trombe wall system.The accuracy of the algorithms was assessed using R^(2)and root mean squared error(RMSE)values.The results demonstrated that the k-nearest neighbors and random forest algorithms exhibited superior performance,with R^(2)and RMSE values of 1 and 0.In contrast,linear regression and decision tree showed weaker performance.These findings highlight the potential of advanced machine learning algorithms for accurate room temperature prediction in Trombe wall systems,enabling informed design decisions to enhance energy efficiency. 展开更多
关键词 Trombe wall Solar energy Thermal storage wall machine learning algorithms
原文传递
Prediction of wear loss quantities of ferro-alloy coating using different machine learning algorithms 被引量:7
10
作者 Osman ALTAY Turan GURGENC +1 位作者 Mustafa ULAS Cihan OZEL 《Friction》 SCIE CSCD 2020年第1期107-114,共8页
In this study,experimental wear losses under different loads and sliding distances of AISI 1020 steel surfaces coated with(wt.%)50FeCrC‐20FeW‐30FeB and 70FeCrC‐30FeB powder mixtures by plasma transfer arc welding w... In this study,experimental wear losses under different loads and sliding distances of AISI 1020 steel surfaces coated with(wt.%)50FeCrC‐20FeW‐30FeB and 70FeCrC‐30FeB powder mixtures by plasma transfer arc welding were determined.The dataset comprised 99 different wear amount measurements obtained experimentally in the laboratory.The linear regression(LR),support vector machine(SVM),and Gaussian process regression(GPR)algorithms are used for predicting wear quantities.A success rate of 0.93 was obtained from the LR algorithm and 0.96 from the SVM and GPR algorithms. 展开更多
关键词 surface coating plasma transfer arc(PTA)welding WEAR PREDICTION machine learning algorithms
原文传递
Machine learning prediction models for ground motion parameters and seismic damage assessment of buildings at a regional scale 被引量:1
11
作者 Sanjeev Bhatta Xiandong Kang Ji Dang 《Resilient Cities and Structures》 2024年第1期84-102,共19页
This study examines the feasibility of using a machine learning approach for rapid damage assessment of rein-forced concrete(RC)buildings after the earthquake.Since the real-world damaged datasets are lacking,have lim... This study examines the feasibility of using a machine learning approach for rapid damage assessment of rein-forced concrete(RC)buildings after the earthquake.Since the real-world damaged datasets are lacking,have limited access,or are imbalanced,a simulation dataset is prepared by conducting a nonlinear time history analy-sis.Different machine learning(ML)models are trained considering the structural parameters and ground motion characteristics to predict the RC building damage into five categories:null,slight,moderate,heavy,and collapse.The random forest classifier(RFC)has achieved a higher prediction accuracy on testing and real-world damaged datasets.The structural parameters can be extracted using different means such as Google Earth,Open Street Map,unmanned aerial vehicles,etc.However,recording the ground motion at a closer distance requires the installation of a dense array of sensors which requires a higher cost.For places with no earthquake recording station/device,it is difficult to have ground motion characteristics.For that different ML-based regressor models are developed utilizing past-earthquake information to predict ground motion parameters such as peak ground acceleration and peak ground velocity.The random forest regressor(RFR)achieved better results than other regression models on testing and validation datasets.Furthermore,compared with the results of similar research works,a better result is obtained using RFC and RFR on validation datasets.In the end,these models are uti-lized to predict the damage categories of RC buildings at Saitama University and Okubo Danchi,Saitama,Japan after an earthquake.This damage information is crucial for government agencies or decision-makers to respond systematically in post-disaster situations. 展开更多
关键词 Seismic damage prediction Ground motion parameter machine learning algorithms Nonlinear time history analysis RC buildings
下载PDF
Medical Internet of things using machine learning algorithms for lung cancer detection 被引量:2
12
作者 Kanchan Pradhan Priyanka Chawla 《Journal of Management Analytics》 EI 2020年第4期591-623,共33页
This paper empirically evaluates the several machine learning algorithms adaptable for lung cancer detection linked with IoT devices.In this work,a review of nearly 65 papers for predicting different diseases,using ma... This paper empirically evaluates the several machine learning algorithms adaptable for lung cancer detection linked with IoT devices.In this work,a review of nearly 65 papers for predicting different diseases,using machine learning algorithms,has been done.The analysis mainly focuses on various machine learning algorithms used for detecting several diseases in order to search for a gap toward the future improvement for detecting lung cancer in medical IoT.Each technique was analyzed on each step,and the overall drawbacks are pointed out.In addition,it also analyzes the type of data used for predicting the concerned disease,whether it is the benchmark or manually collected data.Finally,research directions have been identified and depicted based on the various existing methodologies.This will be helpful for the upcoming researchers to detect the cancerous patients accurately in early stages without any flaws. 展开更多
关键词 disease prediction lung cancer machine learning algorithms internet of things
原文传递
Prediction of After-Sales Behavior in E-Commerce Using Machine Learning Models
13
作者 Yulin Cai Fengqing Chen Jingyang Zhang 《Open Journal of Statistics》 2024年第6期757-774,共18页
With the rapid growth of e-commerce and online transactions, e-commerce platforms face a critical challenge: predicting consumer behavior after purchase. This study aimed to forecast such after-sales behavior within t... With the rapid growth of e-commerce and online transactions, e-commerce platforms face a critical challenge: predicting consumer behavior after purchase. This study aimed to forecast such after-sales behavior within the digital retail environment. We utilized four machine learning models: logistic regression, decision tree, random forest, and XGBoost, employing SMOTE oversampling and class weighting techniques to address class imbalance. To bolster the models’ predictive capabilities, we executed pivotal data processing steps, including feature derivation and one-hot encoding. Upon rigorous evaluation of the models’ performance through the 5-fold cross-validation method, the random forest model was identified as the superior performer, excelling in accuracy, F1 score, and AUC value, and was thus deemed the most effective model for anticipating consumer after-sales behavior. The findings from this research offer actionable strategies for e-commerce platforms to refine their after-sales services and enhance customer satisfaction. 展开更多
关键词 E-COMMERCE Consumer Behavior machine learning algorithms Random Forest
下载PDF
Modeling potential wetland distributions in China based on geographic big data and machine learning algorithms
14
作者 Hengxing Xiang Yanbiao Xi +5 位作者 Dehua Mao Tianyuan Xu Ming Wang Fudong Yu Kaidong Feng Zongming Wang 《International Journal of Digital Earth》 SCIE EI 2023年第1期3706-3724,共19页
Climate change and human activities have reduced the area and degraded the functions and services of wetlands in China.To protect and restore wetlands,it is urgent to predict the spatial distribution of potential wetl... Climate change and human activities have reduced the area and degraded the functions and services of wetlands in China.To protect and restore wetlands,it is urgent to predict the spatial distribution of potential wetlands.In this study,the distribution of potential wetlands in China was simulated by integrating the advantages of Google Earth Engine with geographic big data and machine learning algorithms.Based on a potential wetland database with 46,000 samples and an indicator system of 30 hydrologic,soil,vegetation,and topographic factors,a simulation model was constructed by machine learning algorithms.The accuracy of the random forest model for simulating the distribution of potential wetlands in China was good,with an area under the receiver operating characteristic curve value of 0.851.The area of potential wetlands was 332,702 km^(2),with 39.0%of potential wetlands in Northeast China.Geographic features were notable,and potential wetlands were mainly concentrated in areas with 400-600 mm precipitation,semi-hydric and hydric soils,meadow and marsh vegetation,altitude less than 700 m,and slope less than 3°.The results provide an important reference for wetland remote sensing mapping and a scientific basis for wetland management in China. 展开更多
关键词 Potential wetland distribution machine learning algorithms geographic big data China wetland geographic features
原文传递
Machine learning prediction model for gray-level co-occurrence matrix features of synchronous liver metastasis in colorectal cancer
15
作者 Kai-Feng Yang Sheng-Jie Li +1 位作者 Jun Xu Yong-Bin Zheng 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第6期1571-1581,共11页
BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the ... BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC.AIM To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix(GLCM)features collected from magnetic resonance imaging(MRI).METHODS Our study retrospectively enrolled 392 patients with CRC from Yichang Central People’s Hospital from January 2015 to May 2023.Patients were randomly divided into a training and validation group(3:7).The clinical parameters and GLCM features extracted from MRI were included as candidate variables.The prediction model was constructed using a generalized linear regression model,random forest model(RFM),and artificial neural network model.Receiver operating characteristic curves and decision curves were used to evaluate the prediction model.RESULTS Among the 392 patients,48 had SLM(12.24%).We obtained fourteen GLCM imaging data for variable screening of SLM prediction models.Inverse difference,mean sum,sum entropy,sum variance,sum of squares,energy,and difference variance were listed as candidate variables,and the prediction efficiency(area under the curve)of the subsequent RFM in the training set and internal validation set was 0.917[95%confidence interval(95%CI):0.866-0.968]and 0.09(95%CI:0.858-0.960),respectively.CONCLUSION A predictive model combining GLCM image features with machine learning can predict SLM in CRC.This model can assist clinicians in making timely and personalized clinical decisions. 展开更多
关键词 Colorectal cancer Synchronous liver metastasis Gray-level co-occurrence matrix machine learning algorithm Prediction model
下载PDF
Hot spot temperature prediction and operating parameter estimation of racks in data center using machine learning algorithms based on simulation data 被引量:1
16
作者 Xianzhong Chen Rang Tu +2 位作者 Ming Li Xu Yang Kun Jia 《Building Simulation》 SCIE EI CSCD 2023年第11期2159-2176,共18页
In this paper,models to predict hot spot temperature and to estimate cooling air’s working parameters of racks in data centers were established using machine learning algorithms based on simulation data.First,simulat... In this paper,models to predict hot spot temperature and to estimate cooling air’s working parameters of racks in data centers were established using machine learning algorithms based on simulation data.First,simulation models of typical racks were established in computational fluid dynamics(CFD).The model was validated with field test results and results in literature,error of which was less than 3%.Then,the CFD model was used to simulate thermal environments of a typical rack considering different factors,such as servers’power,which is from 3.3 kW to 20.1 kW,cooling air’s inlet velocity,which is from 1.0 m/s to 3.0 m/s,and cooling air’s inlet temperature,which is from 16℃ to 26℃ The highest temperature in the rack,also called hot spot temperature,was selected for each case.Next,a prediction model of hot spot temperature was built using machine learning algorithms,with servers’power,cooling air’s inlet velocity and cooling air’s inlet temperature as inputs,and the hot spot temperatures as outputs.Finally,based on the prediction model,an operating parameters estimation model was established to recommend cooling air’s inlet temperatures and velocities,which can not only keep the hot spot temperature at the safety value,but are also energy saving. 展开更多
关键词 data center CFD simulation hot spot temperature machine learning algorithm prediction and estimation models
原文传递
Machine learning approach for the prediction of macrosomia
17
作者 Xiaochen Gu Ping Huang +5 位作者 Xiaohua Xu Zhicheng Zheng Kaiju Luo Yujie Xu Yizhen Jia Yongjin Zhou 《Visual Computing for Industry,Biomedicine,and Art》 2024年第1期132-141,共10页
Fetal macrosomia is associated with maternal and newborn complications due to incorrect fetal weight estimation or inappropriate choice of delivery models.The early screening and evaluation of macrosomia in the third ... Fetal macrosomia is associated with maternal and newborn complications due to incorrect fetal weight estimation or inappropriate choice of delivery models.The early screening and evaluation of macrosomia in the third trimester can improve delivery outcomes and reduce complications.However,traditional clinical and ultrasound examinations face difficulties in obtaining accurate fetal measurements during the third trimester of pregnancy.This study aims to develop a comprehensive predictive model for detecting macrosomia using machine learning(ML)algorithms.The accuracy of macrosomia prediction using logistic regression,k-nearest neighbors,support vector machine,random forest(RF),XGBoost,and LightGBM algorithms was explored.Each approach was trained and validated using data from 3244 pregnant women at a hospital in southern China.The information gain method was employed to identify deterministic features associated with the occurrence of macrosomia.The performance of six ML algorithms based on the recall and area under the curve evaluation metrics were compared.To develop an efficient prediction model,two sets of experiments based on ultrasound examination records within 1-7 days and 8-14 days prior to delivery were conducted.The ensemble model,comprising the RF,XGBoost,and LightGBM algorithms,showed encouraging results.For each experimental group,the proposed ensemble model outperformed other ML approaches and the tra-ditional Hadlock formula.The experimental results indicate that,with the most risk-relevant features,the ML algo-rithms presented in this study can predict macrosomia and assist obstetricians in selecting more appropriate delivery models. 展开更多
关键词 MACROSOMIA Fetal weight prediction machine learning algorithm Feature selection Ensemble learning
下载PDF
Performance evaluation of DHRR-RIS based HP design using machine learning algorithms
18
作者 Girish Kumar N G Sree Ranga Raju M N 《Intelligent and Converged Networks》 EI 2023年第3期237-260,共24页
Reconfigurable Intelligent Surfaces(RIS)have emerged as a promising technology for improving the reliability of massive MIMO communication networks.However,conventional RIS suffer from poor Spectral Efficiency(SE)and ... Reconfigurable Intelligent Surfaces(RIS)have emerged as a promising technology for improving the reliability of massive MIMO communication networks.However,conventional RIS suffer from poor Spectral Efficiency(SE)and high energy consumption,leading to complex Hybrid Precoding(HP)designs.To address these issues,we propose a new low-complexity HP model,named Dynamic Hybrid Relay Reflecting RIS based Hybrid Precoding(DHRR-RIS-HP).Our approach combines active and passive elements to cancel out the downsides of both conventional designs.We first design a DHRR-RIS and optimize the pilot and Channel State Information(CSI)estimation using an adaptive threshold method and Adaptive Back Propagation Neural Network(ABPNN)algorithm,respectively,to reduce the Bit Error Rate(BER)and energy consumption.To optimize the data stream,we cluster them into private and public streams using Enhanced Fuzzy C-Means(EFCM)algorithm,and schedule them based on priority and emergency level.To maximize the sum rate and SE,we perform digital precoder optimization at the Base Station(BS)side using Deep Deterministic Policy Gradient(DDPG)algorithm and analog precoder optimization at the DHRR-RIS using Fire Hawk Optimization(FHO)algorithm.We implement our proposed work using MATLAB R2020a and compare it with existing works using several validation metrics.Our results show that our proposed work outperforms existing works in terms of SE,Weighted Sum Rate(WSR),and BER. 展开更多
关键词 Reconfigurable Intelligent Surfaces(RIS) Dynamic Hybrid Relay Reflecting(DHRR)-RIS Multi User Multiple Input Multiple Output(MU-MIMO) hybrid precoder machine learning and deep learning algorithms channel state estimation
原文传递
Runoff Modeling in Ungauged Catchments Using Machine Learning Algorithm-Based Model Parameters Regionalization Methodology 被引量:1
19
作者 Houfa Wu Jianyun Zhang +4 位作者 Zhenxin Bao Guoqing Wang Wensheng Wang Yanqing Yang Jie Wang 《Engineering》 SCIE EI CAS CSCD 2023年第9期93-104,共12页
Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization... Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization,which is the most widely used approach.Runoff modeling was studied in 38 catchments located in the Yellow–Huai–Hai River Basin(YHHRB).The values of the Nash–Sutcliffe efficiency coefficient(NSE),coefficient of determination(R2),and percent bias(PBIAS)indicated the acceptable performance of the soil and water assessment tool(SWAT)model in the YHHRB.Nine descriptors belonging to the categories of climate,soil,vegetation,and topography were used to express the catchment characteristics related to the hydrological processes.The quantitative relationships between the parameters of the SWAT model and the catchment descriptors were analyzed by six regression-based models,including linear regression(LR)equations,support vector regression(SVR),random forest(RF),k-nearest neighbor(kNN),decision tree(DT),and radial basis function(RBF).Each of the 38 catchments was assumed to be an ungauged catchment in turn.Then,the parameters in each target catchment were estimated by the constructed regression models based on the remaining 37 donor catchments.Furthermore,the similaritybased regionalization scheme was used for comparison with the regression-based approach.The results indicated that the runoff with the highest accuracy was modeled by the SVR-based scheme in ungauged catchments.Compared with the traditional LR-based approach,the accuracy of the runoff modeling in ungauged catchments was improved by the machine learning algorithms because of the outstanding capability to deal with nonlinear relationships.The performances of different approaches were similar in humid regions,while the advantages of the machine learning techniques were more evident in arid regions.When the study area contained nested catchments,the best result was calculated with the similarity-based parameter regionalization scheme because of the high catchment density and short spatial distance.The new findings could improve flood forecasting and water resources planning in regions that lack observed data. 展开更多
关键词 Parameters estimation Ungauged catchments Regionalization scheme machine learning algorithms Soil and water assessment tool model
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部