Wireless power transfer(WPT) to support mobile and portable devices is an emerging wireless technique.Among all kinds of approaches,magnetic resonance coupling(MRC) is an excellent one for mid-range WPT,which provides...Wireless power transfer(WPT) to support mobile and portable devices is an emerging wireless technique.Among all kinds of approaches,magnetic resonance coupling(MRC) is an excellent one for mid-range WPT,which provides better mobility,flexibility,and convenience due to its simplicity in hardware implementation and longer transmission distances.In this paper,we consider an MRCWPT system with multiple power transmitters,one intended power receiver and multiple unintended power receivers.We investigate the probabilistic robust beamforming designs and provide efficient algorithms to achieve the local optimums under two different criteria,i.e.,total source power minimization problem and min-max unintended receiving power restriction problem.As the problems are quite typical in robust design situations,our proposed robust beamformers can be conveniently applied to other probabilistic robust design problems,thus reduce the complexity as well as improve the beamforming performance.Numerical results demonstrate that the proposed algorithms can significantly improve the performance as well as the robustness of the WPT system.展开更多
Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic pe...Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic performance in engineering. In this study, the shielding effectiveness of a two-coil MR-WPT system for different material shields is analyzed in theory using Moser's formula and Schelkunoff's formula. On this basis a candidate magnetic-shielding scheme with a double-layer structure is determined, which has better shielding effectiveness and coils coupling coefficient. Finally, some finite element simulation results validate the correctness of the theoretical analysis, and the shielding effectiveness with the double-layer shield in maximum is 30?dB larger than the one with the single-layer case.展开更多
Due to the increasing commercial interest in autonomy and sustainability,this paper reviews and presents a comprehensive summary of the resonant-inductive power transmission(RPT)technology for autonomous mobile robots...Due to the increasing commercial interest in autonomy and sustainability,this paper reviews and presents a comprehensive summary of the resonant-inductive power transmission(RPT)technology for autonomous mobile robots.It outlines historic and recent research activities in wireless power transmission,covering the fundamental operation of microwave,capacitive and inductive power transfer technologies,state-of-the-art developments in RPT for high-power applications,current design and health standards,technological drawbacks,and possible future trends.In this paper,coupling-enhanced pad designs,adaptive tuning techniques,compensation network designs,and control techniques are explored.Major design issues such as coupling variation,frequency splitting,and bifurcation are reviewed.The difference between maximum power transfer and maximum energy efficiency is highlighted.Human exposure guidelines are summarized from documentations provided by the Institute of Electrical and Electronics Engineers(IEEE)and the International Commission on Non-ionizing Radiation Protection(ICNIRP).Other standards like WPC’s Qi and Airfuel design standards are also summarized.Finally,the possible trends of the relevant research and development,particularly dynamic charging,are discussed.The intention of this review is to encourage designs that will relieve robot operators of the burden of frequent manual recharging,and to reduce downtime and increase the productivity of autonomous mobile robots in industrial environments.展开更多
Traditional power supply method for moving electric railway vehicles is based on contact type power collection technology.This sometimes cannot meet the requirements of modern rail transportation.A new wireless power ...Traditional power supply method for moving electric railway vehicles is based on contact type power collection technology.This sometimes cannot meet the requirements of modern rail transportation.A new wireless power transfer(WPT)technology can offer significant benefits in modern rail transportation particularly in some stringent environments.This paper reviews the status and the development of rail transit power supply technology,and introduces a new challenging technology--inductive power transfer(IPT)technology for rail transit.Tesla established the underpinning of IPT technology and creatively and significantly demonstrated power transfer by using highly resonant tuned coils long time ago.However,only in recent years the IPT technology has been significantly improved including the transfer air-gap length,transfer efficiency,coupling factor,power transfer capability and so on.This is mainly due to innovative semiconductor switches,higher control frequency,better coil designs and high performance material,new track and vehicle construction techniques.Recent advances in IPT for rail transit and major milestones of the developments are summarized in this paper.Some important technical issues such as coupling coil structures,power supply schemes,segmentation switching techniques for long-distance power supply,and bidirectional IPT systems for braking energy feedback are discussed.展开更多
It has been reported that, through the evanescent near fields, the strongly coupled magnetic resonance is able to achieve an efficient mid-range Wireless Power Transfer (WPT) beyond the characteristic size of the reso...It has been reported that, through the evanescent near fields, the strongly coupled magnetic resonance is able to achieve an efficient mid-range Wireless Power Transfer (WPT) beyond the characteristic size of the resonator. Recent studies on of the relay effect of the WPT allow more distant and flexible energy transmission. These new developments hold a promise to construct a fully wireless Body Sensor Network (wBSN) using the new mid-range WPT theory. In this paper, a general optimization strategy for a WPT network is presented by analysis and simulation using the coupled mode theory. Based on the results of theoretical and computational study, two types of thin-film resonators are designed and prototyped for the construction of wBSNs. These resonators and associated electronic components can be integrated into a WPT platform to permit wireless power delivery to multiple wearable sensors and medical implants on the surface and within the human body. Our experiments have demonstrated the feasibility of the WPT approach.展开更多
In order to suppress the fast decrease of the transfer efficiency of magnetic resonance coupled wireless power transfer system(MRCWPTS) with distance increase,this paper investigates the impact factors of the system t...In order to suppress the fast decrease of the transfer efficiency of magnetic resonance coupled wireless power transfer system(MRCWPTS) with distance increase,this paper investigates the impact factors of the system transfer efficiency and is,then formulates a new efficiency optimal control method based on frequency control.Based upon this control method two optimal control schemes are designed to achieve transfer efficiency control of the system.Simulations and experiments show that the proposed efficiency optimal control method can effectively stabilize the system transfer efficiency in a certain range so as to successfully solve the subtle issue of transfer efficiency variation with distance.展开更多
目前,磁耦合谐振式无线电能传输MCR-WPT(magnetic coupling resonance-wireless power transmission)的研究主要集中在单发射多负载静止和单发射单负载转动2种形式。通过对单发射低速转动多负载状态下的系统进行研究,建立单发射多负载...目前,磁耦合谐振式无线电能传输MCR-WPT(magnetic coupling resonance-wireless power transmission)的研究主要集中在单发射多负载静止和单发射单负载转动2种形式。通过对单发射低速转动多负载状态下的系统进行研究,建立单发射多负载系统并进行理论分析,使用COMSOL对静止状态下多负载接收线圈进行仿真,设置静止状态与旋转状态作对比实验,分析接收端转动对MCR-WPT系统传输效率的影响,探讨低速旋转状态下系统传输效率的变化规律。结果表明,在低速转动三负载时,系统能够保持稳定的功率输出,单个负载的传输效率可以达到23.260%,总传输效率达到69.768%,低速转动对传输效率影响较小。展开更多
Wireless power transfer (WPT) using a metallic tube with axial slits was attempted to demonstrate WPT using magnetic resonance coupling to the diagnostics infrastructure. The transmission efficiency was measured at va...Wireless power transfer (WPT) using a metallic tube with axial slits was attempted to demonstrate WPT using magnetic resonance coupling to the diagnostics infrastructure. The transmission efficiency was measured at various distances using the transmission and receiver resonator in the tube. Furthermore, the transmission and receiver resonator were set respectively outside and inside of the tube. Experiment results were assessed computationally using the finite-difference time-domain (FDTD) simulation. As a result, the transmission efficiency of the transmitter and receiver resonators in the metallic slit tube was higher than that of the case without a metallic tube in the range of the normalized transmission-distance of x/d > 0.4. In the simulation, the current density on the metallic tube around both transmitter and receiver coil were connected. These results reveal that the slit on the tube plays a role of the relay coil.展开更多
针对谐振式无线电能传输系统中分数阶电感、电容元件的仿真实现困难的问题,采用等效阻抗实现分数阶电容的等效.基于分数阶电容的阻抗特性,给出了一种分数阶RLC_(α)串联谐振双向无线电能传输(bidirectional wireless power transfer,BD-...针对谐振式无线电能传输系统中分数阶电感、电容元件的仿真实现困难的问题,采用等效阻抗实现分数阶电容的等效.基于分数阶电容的阻抗特性,给出了一种分数阶RLC_(α)串联谐振双向无线电能传输(bidirectional wireless power transfer,BD-WPT)系统结构,通过建立含分数阶电容的串联谐振式双向无线电能传输系统的电路模型,推导了其传输功率和效率关系.仿真实验结果表明,与整数阶串联谐振系统相比,系统的输出功率提升了7.82%,传输效率提升了0.58个百分点.展开更多
基金supported by National Natural Science Foundation of China(Grant No.61771185,61831013)Science and Technology Research Project of Henan Province(Grant No.182102210044)+1 种基金Key Scientific Research Program of Henan Higher Education(Grant No.18A510009)Beijing Municipal Natural Science Foundation(Grant No.4182030)
文摘Wireless power transfer(WPT) to support mobile and portable devices is an emerging wireless technique.Among all kinds of approaches,magnetic resonance coupling(MRC) is an excellent one for mid-range WPT,which provides better mobility,flexibility,and convenience due to its simplicity in hardware implementation and longer transmission distances.In this paper,we consider an MRCWPT system with multiple power transmitters,one intended power receiver and multiple unintended power receivers.We investigate the probabilistic robust beamforming designs and provide efficient algorithms to achieve the local optimums under two different criteria,i.e.,total source power minimization problem and min-max unintended receiving power restriction problem.As the problems are quite typical in robust design situations,our proposed robust beamformers can be conveniently applied to other probabilistic robust design problems,thus reduce the complexity as well as improve the beamforming performance.Numerical results demonstrate that the proposed algorithms can significantly improve the performance as well as the robustness of the WPT system.
基金Supported by the National Natural Science Foundation of China under Grant No 51377185
文摘Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic performance in engineering. In this study, the shielding effectiveness of a two-coil MR-WPT system for different material shields is analyzed in theory using Moser's formula and Schelkunoff's formula. On this basis a candidate magnetic-shielding scheme with a double-layer structure is determined, which has better shielding effectiveness and coils coupling coefficient. Finally, some finite element simulation results validate the correctness of the theoretical analysis, and the shielding effectiveness with the double-layer shield in maximum is 30?dB larger than the one with the single-layer case.
基金partially funded by the Natural Sciences and Engineering Research Council of Canada(NSERC)through the Discovery Grant Program(RGPIN2018-05471 and RGPIN-2017-05762).
文摘Due to the increasing commercial interest in autonomy and sustainability,this paper reviews and presents a comprehensive summary of the resonant-inductive power transmission(RPT)technology for autonomous mobile robots.It outlines historic and recent research activities in wireless power transmission,covering the fundamental operation of microwave,capacitive and inductive power transfer technologies,state-of-the-art developments in RPT for high-power applications,current design and health standards,technological drawbacks,and possible future trends.In this paper,coupling-enhanced pad designs,adaptive tuning techniques,compensation network designs,and control techniques are explored.Major design issues such as coupling variation,frequency splitting,and bifurcation are reviewed.The difference between maximum power transfer and maximum energy efficiency is highlighted.Human exposure guidelines are summarized from documentations provided by the Institute of Electrical and Electronics Engineers(IEEE)and the International Commission on Non-ionizing Radiation Protection(ICNIRP).Other standards like WPC’s Qi and Airfuel design standards are also summarized.Finally,the possible trends of the relevant research and development,particularly dynamic charging,are discussed.The intention of this review is to encourage designs that will relieve robot operators of the burden of frequent manual recharging,and to reduce downtime and increase the productivity of autonomous mobile robots in industrial environments.
基金This work was supported in part by the National Key R&D Program of China under Grant 2017YFB1201003.
文摘Traditional power supply method for moving electric railway vehicles is based on contact type power collection technology.This sometimes cannot meet the requirements of modern rail transportation.A new wireless power transfer(WPT)technology can offer significant benefits in modern rail transportation particularly in some stringent environments.This paper reviews the status and the development of rail transit power supply technology,and introduces a new challenging technology--inductive power transfer(IPT)technology for rail transit.Tesla established the underpinning of IPT technology and creatively and significantly demonstrated power transfer by using highly resonant tuned coils long time ago.However,only in recent years the IPT technology has been significantly improved including the transfer air-gap length,transfer efficiency,coupling factor,power transfer capability and so on.This is mainly due to innovative semiconductor switches,higher control frequency,better coil designs and high performance material,new track and vehicle construction techniques.Recent advances in IPT for rail transit and major milestones of the developments are summarized in this paper.Some important technical issues such as coupling coil structures,power supply schemes,segmentation switching techniques for long-distance power supply,and bidirectional IPT systems for braking energy feedback are discussed.
文摘It has been reported that, through the evanescent near fields, the strongly coupled magnetic resonance is able to achieve an efficient mid-range Wireless Power Transfer (WPT) beyond the characteristic size of the resonator. Recent studies on of the relay effect of the WPT allow more distant and flexible energy transmission. These new developments hold a promise to construct a fully wireless Body Sensor Network (wBSN) using the new mid-range WPT theory. In this paper, a general optimization strategy for a WPT network is presented by analysis and simulation using the coupled mode theory. Based on the results of theoretical and computational study, two types of thin-film resonators are designed and prototyped for the construction of wBSNs. These resonators and associated electronic components can be integrated into a WPT platform to permit wireless power delivery to multiple wearable sensors and medical implants on the surface and within the human body. Our experiments have demonstrated the feasibility of the WPT approach.
文摘In order to suppress the fast decrease of the transfer efficiency of magnetic resonance coupled wireless power transfer system(MRCWPTS) with distance increase,this paper investigates the impact factors of the system transfer efficiency and is,then formulates a new efficiency optimal control method based on frequency control.Based upon this control method two optimal control schemes are designed to achieve transfer efficiency control of the system.Simulations and experiments show that the proposed efficiency optimal control method can effectively stabilize the system transfer efficiency in a certain range so as to successfully solve the subtle issue of transfer efficiency variation with distance.
文摘目前,磁耦合谐振式无线电能传输MCR-WPT(magnetic coupling resonance-wireless power transmission)的研究主要集中在单发射多负载静止和单发射单负载转动2种形式。通过对单发射低速转动多负载状态下的系统进行研究,建立单发射多负载系统并进行理论分析,使用COMSOL对静止状态下多负载接收线圈进行仿真,设置静止状态与旋转状态作对比实验,分析接收端转动对MCR-WPT系统传输效率的影响,探讨低速旋转状态下系统传输效率的变化规律。结果表明,在低速转动三负载时,系统能够保持稳定的功率输出,单个负载的传输效率可以达到23.260%,总传输效率达到69.768%,低速转动对传输效率影响较小。
文摘Wireless power transfer (WPT) using a metallic tube with axial slits was attempted to demonstrate WPT using magnetic resonance coupling to the diagnostics infrastructure. The transmission efficiency was measured at various distances using the transmission and receiver resonator in the tube. Furthermore, the transmission and receiver resonator were set respectively outside and inside of the tube. Experiment results were assessed computationally using the finite-difference time-domain (FDTD) simulation. As a result, the transmission efficiency of the transmitter and receiver resonators in the metallic slit tube was higher than that of the case without a metallic tube in the range of the normalized transmission-distance of x/d > 0.4. In the simulation, the current density on the metallic tube around both transmitter and receiver coil were connected. These results reveal that the slit on the tube plays a role of the relay coil.
文摘针对谐振式无线电能传输系统中分数阶电感、电容元件的仿真实现困难的问题,采用等效阻抗实现分数阶电容的等效.基于分数阶电容的阻抗特性,给出了一种分数阶RLC_(α)串联谐振双向无线电能传输(bidirectional wireless power transfer,BD-WPT)系统结构,通过建立含分数阶电容的串联谐振式双向无线电能传输系统的电路模型,推导了其传输功率和效率关系.仿真实验结果表明,与整数阶串联谐振系统相比,系统的输出功率提升了7.82%,传输效率提升了0.58个百分点.