期刊文献+
共找到10,843篇文章
< 1 2 250 >
每页显示 20 50 100
Seismic control of multi-degrees-of-freedom structures by vertical mass isolation method using MR dampers
1
作者 Mohamad Shahrokh Abdi Masoud Nekooei Mohammad-Ali Jafari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期503-510,共8页
Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is loc... Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively. 展开更多
关键词 seismic control vertical mass isolation base shear magnetorheological damper semi-active control
下载PDF
MRE耗能阻尼器力学性能及半主动控制分析
2
作者 杜永峰 屠旭松 韩博 《振动.测试与诊断》 EI CSCD 北大核心 2024年第4期703-709,826,共8页
根据磁流变弹性体(magnetorheological elastomer,简称MRE)的可调力学特性提出了基于MRE的新型耗能阻尼器,并对制备完成的硅橡胶基磁流变弹性体及阻尼器分别进行力学性能试验。利用Matlab/Simulink对各层均装有MRE阻尼器的7层框架结构... 根据磁流变弹性体(magnetorheological elastomer,简称MRE)的可调力学特性提出了基于MRE的新型耗能阻尼器,并对制备完成的硅橡胶基磁流变弹性体及阻尼器分别进行力学性能试验。利用Matlab/Simulink对各层均装有MRE阻尼器的7层框架结构进行建模仿真分析,将被动控制与基于半主动控制策略的经典最优控制和序列最优控制进行比较。力学测试结果表明:MRE在0~500 mT磁感应强度下其剪切模量变化值达到132.43 kPa,磁流变效应约提高274%;增大加载幅值和加载速率,均能提高MRE阻尼器的力学性能;对阻尼器施加电流激励,在0~10 A增大过程中其等效刚度和阻尼可以实现连续可调。仿真结果表明:基于MRE阻尼器的半主动控制系统可以有效减小结构在地震作用下的响应,3种控制均能对结构动力响应起到良好的控制效果,其中序列最优控制算法的控制效果最为显著且精确度更高;系统在实际测试中需考虑多方面因素影响,尽可能减小误差。 展开更多
关键词 阻尼器 振动控制 磁流变弹性体 变刚度变阻尼 半主动控制策略
下载PDF
基于MRD优化布置的水轮发电机组碰摩系统振动抑制
3
作者 张雷克 聂梁 +2 位作者 张金剑 王雪妮 马震岳 《振动与冲击》 EI CSCD 北大核心 2024年第13期1-11,共11页
针对水轮发电机组转子-转轮系统碰摩故障问题,采用磁流变液阻尼器(magneto-rheological damper,MRD)对轴系振动进行抑制,旨在探究MRD对机组轴系振动的影响规律及其对系统碰摩故障的抑制效果。首先,将机组轴向位置函数引入MRD非线性动力... 针对水轮发电机组转子-转轮系统碰摩故障问题,采用磁流变液阻尼器(magneto-rheological damper,MRD)对轴系振动进行抑制,旨在探究MRD对机组轴系振动的影响规律及其对系统碰摩故障的抑制效果。首先,将机组轴向位置函数引入MRD非线性动力学模型,推导了碰摩故障下含轴向分布参数的MRD-转子-转轮系统动力学方程。其次,基于数值模拟方法,以机组转速为控制参数对比分析了是否考虑MRD的转子-转轮系统非线性动力学行为。最后,研究了不同MRD轴向布置参数对碰摩转子-转轮系统动力学行为的影响。研究结果表明:MRD的加入对转子、转轮非稳态运动具有良好约束作用,能够显著减小转子、转轮振动幅值,有效避免了机组轴系碰摩故障的发生;当阻尼器位置参数s_(1)、s_(2)分别取0.25与0.95时,MRD对系统的减振效果最佳。通过在机组轴系合理布置MRD,可有效改善系统振动情况,从而为水轮发电机组振动控制提供有益指导。 展开更多
关键词 水轮发电机组 转子-转轮系统 碰摩 磁流变液阻尼器(mrD) 振动优化控制
下载PDF
基于未知风荷载作用下拉索振动位移的拉索MR阻尼器失效破坏的原位识别方法
4
作者 雷鹰 杨雄骏 +1 位作者 朱宏平 沈文爱 《土木工程学报》 EI CSCD 北大核心 2024年第6期180-189,共10页
MR阻尼器在长期服役过程中可能由于各种因素导致阻尼器失效破坏。现有的对MR阻尼器的性能识别多为离线方法,需将阻尼器从斜拉索上拆卸下来后进行人工检测。该文提出一种基于斜拉索在未知风荷载作用下振动位移,对在役失效无模型的MR阻尼... MR阻尼器在长期服役过程中可能由于各种因素导致阻尼器失效破坏。现有的对MR阻尼器的性能识别多为离线方法,需将阻尼器从斜拉索上拆卸下来后进行人工检测。该文提出一种基于斜拉索在未知风荷载作用下振动位移,对在役失效无模型的MR阻尼器作用力进行原位在线识别的方法。首先,建立模态坐标下斜拉索-阻尼器系统运动方程及观测方程,并进行模态截断以减少未知变量的数量。然后,将模态风荷载建模为随机游走过程并加入系统的增广状态中,并视MR阻尼器的作用力视为作用在斜拉索上的‘附加未知输入’,采用最近提出的无直接反馈的平滑最小方差无偏Bayesian滤波,对结构增广状态和MR阻尼器作用力进行识别。通过识别数值模拟的MR阻尼器三种典型的失效破坏模式,验证所提方法的有效性。 展开更多
关键词 斜拉索减振 mr阻尼器失效 未知风荷载 随机游走过程 平滑最小方差无偏滤波
原文传递
基于Damper的方向盘抖动问题优化设计
5
作者 葛峰 高中扩 +1 位作者 钱勇 王小飞 《汽车维修技师》 2024年第18期115-115,共1页
方向盘是顾客使用频次较高的零部件,受发动机等振源影响,在某些工况下方向盘会出现抖动等让顾客感到不适的问题,本文浅析了某车型方向盘高速抖动的原因,在现有方向盘结构上优化设计,增加Damper吸振器,有效解决了方向盘抖动问题,提升了... 方向盘是顾客使用频次较高的零部件,受发动机等振源影响,在某些工况下方向盘会出现抖动等让顾客感到不适的问题,本文浅析了某车型方向盘高速抖动的原因,在现有方向盘结构上优化设计,增加Damper吸振器,有效解决了方向盘抖动问题,提升了顾客舒适性。 展开更多
关键词 方向盘 抖动 damper吸振器 舒适性
原文传递
Investigation on Magnetorheological Effect of Novel Self-healing Magnetorheological Elastomers
6
作者 Wang Deping Wang Jing +4 位作者 Wang Xin Noman Tariq Yu Zhen Zheng Wenbo Wei Yintao 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期88-97,共10页
Magnetorheological elastomers(MREs)hold significant promise in various fields such as automotive engineering,and civil engineering,where they serve as intelligent materials.Depending on the application of an external ... Magnetorheological elastomers(MREs)hold significant promise in various fields such as automotive engineering,and civil engineering,where they serve as intelligent materials.Depending on the application of an external magnetic field,these materials exhibit varying magnetorheological and viscoelastic properties,including shear stress,yield stress,dynamic moduli,and damping.In this work,a new type of MRE,termed self-healing MREs(SH-MREs),has been developed by adding a novel self-healing agent into existing MREs.The dynamic modulus and loss factor of SH-MREs with different compositions have been characterized under various conditions of frequency,temperature,and strain.The results show that as the strain value increases,the loss factor also increases.Moreover,the loss factor initially increases and then decreases with increasing magnetic field strength.Although higher concentrations of ferromagnetic particles increase the loss factor,they enhance the operational range due to their better responsiveness to magnetic fields.SH-MREs demonstrate improved damping capabilities,attributed to the formation of coordination bonds between ferromagnetic particles and the self-healing agent.The stable structure increases the viscosity of MREs.The results of the regression model suggest a direct proportionality between sensitivity to the magnetic field and the ferromagnetic particle concentration. 展开更多
关键词 magnetorheological elastomer magnetorheological effect storage modulus loss factor
下载PDF
基于MRG/CNT复合材料的磁电阻效应研究
7
作者 居本祥 周光银 杨波 《仪表技术与传感器》 CSCD 北大核心 2024年第1期10-14,51,共6页
通过在磁流变胶泥(MRG)中加入碳纳米管(CNT)组成复合材料,结合MRG的优良磁响应特性与CNT的电导特性,以复合材料作为填充材料设计实验敏感元件,建立实验表征系统对复合材料磁电阻效应的静态与动态特性开展了实验研究,并从微观层面分析了... 通过在磁流变胶泥(MRG)中加入碳纳米管(CNT)组成复合材料,结合MRG的优良磁响应特性与CNT的电导特性,以复合材料作为填充材料设计实验敏感元件,建立实验表征系统对复合材料磁电阻效应的静态与动态特性开展了实验研究,并从微观层面分析了磁电阻效应机理,揭示了激励磁场影响复合材料电阻的关键因素。结果表明:复合材料处在磁工作区范围内,敏感元件的电阻值随磁场的增强而衰减,相对变化量达到了62.2%,同时表现出良好的时间稳定性;实验的动态响应输出与激励磁场的变化趋势高度一致,证明了复合材料具有良好的动态磁电阻响应特性。 展开更多
关键词 磁流变胶泥 碳纳米管 复合材料 敏感元件 磁电阻效应
下载PDF
大部件装配中的MRE被动柔顺装置研究
8
作者 沈烨 贾保国 +2 位作者 田辉 田威 刘亮 《现代制造工程》 CSCD 北大核心 2024年第9期34-39,共6页
随着我国航天制造领域智能化要求的不断提升,利用工业机器人实现大部件的柔顺辅助装配对实现航天器的智能制造具有重要意义。然而在进行大部件的高精度装配时,机器人易受限于本体性能而难以弥补物理上的机械设计误差。据此,基于磁流变... 随着我国航天制造领域智能化要求的不断提升,利用工业机器人实现大部件的柔顺辅助装配对实现航天器的智能制造具有重要意义。然而在进行大部件的高精度装配时,机器人易受限于本体性能而难以弥补物理上的机械设计误差。据此,基于磁流变弹性体(Magnetorheological Elastomer,MRE)设计了一种可变刚度的被动柔顺装置置于机器人末端,并对其进行了仿真及实验测试,结果表明,升高通入电流可提高装置刚度,且装置在1 A电流差下的位移差约为20%,适配柔顺辅助装配的不同过程。 展开更多
关键词 磁流变弹性体 被动柔顺装置 变刚度 大部件装配
下载PDF
风力发电机叶片MRD模糊LQR减振控制研究
9
作者 高雪莲 王宪杰 +3 位作者 雷春雨 李展鹏 袁宗林 陈永党 《噪声与振动控制》 CSCD 北大核心 2024年第5期44-49,共6页
针对在载荷作用下风力机叶片面内外振动控制问题,基于磁流变阻尼器MRD(Magnetorheological Damper)开展风力机叶片减振控制研究,采用模糊控制和LQR(Linear Quadratic Regulator)控制算法相结合的策略对MRD的阻尼力进行最优控制设计,以... 针对在载荷作用下风力机叶片面内外振动控制问题,基于磁流变阻尼器MRD(Magnetorheological Damper)开展风力机叶片减振控制研究,采用模糊控制和LQR(Linear Quadratic Regulator)控制算法相结合的策略对MRD的阻尼力进行最优控制设计,以实现风力机叶片最优减振控制。首先,介绍MRD的原理和力学模型;其次,以NREL-5MW风力发电机组为数值仿真对象,建立风机叶片MRD动力学模型;最后,设计相应的模糊LQR半主动控制算法,跟踪识别风力机叶片在载荷作用下的动力响应。结果表明:与MRD叶片响应相比,模糊控制及模糊LQR控制策略均具有良好的减振效果,均使叶片面内外响应明显减小。此外,对比分析发现模糊LQR控制效果相比模糊控制效果更好,且叶片减振效果接近LQR主动控制下的位移响应,同时也充分表明该控制方法的合理性和优越性。 展开更多
关键词 振动与波 风力机 叶片 磁流变阻尼器 半主动控制 模糊LQR控制
下载PDF
Theoretical and Experimental Study on the Performance of Hermetic Diaphragm Squeeze Film Dampers for Gas-Lubricated Bearings
10
作者 Jianwei Wang Haoxi Zhang +3 位作者 Shaocun Han Hang Li Peng Wang Kai Feng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期151-169,共19页
Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearing... Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development. 展开更多
关键词 Hermetic diaphragm squeeze film damper COMPRESSIBILITY Dynamic model Experimental studies
下载PDF
Vibration attenuation performance of wind turbine tower using a prestressed tuned mass damper under seismic excitation
11
作者 Lei Zhenbo Liu Gang +1 位作者 Wang Hui Hui Yi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期511-524,共14页
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau... With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation. 展开更多
关键词 wind turbine tower prestressed tuned mass damper vibration control seismic excitation numerical simulation
下载PDF
Development and Application of a Power Law Constitutive Model for Eddy Current Dampers
12
作者 Longteng Liang Zhouquan Feng +2 位作者 Hongyi Zhang Zhengqing Chen Changzhao Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2403-2419,共17页
Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tot... Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs. 展开更多
关键词 Eddy current damper constitutive model finite element analysis vibration control power law constitutive model
下载PDF
Parameters Optimization and Performance Evaluation of the Tuned Inerter Damper for the Seismic Protection of Adjacent Building Structures
13
作者 Xiaofang Kang Jian Wu +1 位作者 Xinqi Wang Shancheng Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期551-593,共43页
In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in ... In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes. 展开更多
关键词 Adjacent buildings tuned inerter damper(TID) H2 norm optimization vibration control energy harvesting
下载PDF
Actively tunable sandwich acoustic metamaterials with magnetorheological elastomers
14
作者 Jinhui LIU Yu XUE +2 位作者 Zhihong GAO A.O.KRUSHYNSKA Jinqiang LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第11期1875-1894,共20页
Sandwich structures are widespread in engineering applications because of their advantageous mechanical properties.Recently,their acoustic performance has also been improved to enable attenuation of low-frequency vibr... Sandwich structures are widespread in engineering applications because of their advantageous mechanical properties.Recently,their acoustic performance has also been improved to enable attenuation of low-frequency vibrations induced by noisy environments.Here,we propose a new design of sandwich plates(SPs)featuring a metamaterial core with an actively tunable low-frequency bandgap.The core contains magnetorheological elastomer(MRE)resonators which are arranged periodically and enable controlling wave attenuation by an external magnetic field.We analytically estimate the sound transmission loss(STL)of the plate using the space harmonic expansion method.The low frequency sound insulation performance is also analyzed by the equivalent dynamic density method,and the accuracy of the obtained results is verified by finite-element simulations.Our results demonstrate that the STL of the proposed plate is enhanced compared with a typical SP analog,and the induced bandgap can be effectively tuned to desired frequencies.This study further advances the field of actively controlled acoustic metamaterials,and paves the way to their practical applications. 展开更多
关键词 sandwich plate(SP) magnetorheological elastomer(mrE) sound transmission loss(STL) vibration control acoustic metamaterial
下载PDF
Parameter Optimization of Tuned Mass Damper Inerter via Adaptive Harmony Search
15
作者 Yaren Aydın Gebrail Bekdas +1 位作者 Sinan Melih Nigdeli Zong Woo Geem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2471-2499,共29页
Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using ... Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using different technologies.Tall buildings are more susceptible to vibrations such as wind and earthquakes.Therefore,vibration control has become an important issue in civil engineering.This study optimizes tuned mass damper inerter(TMDI)using far-fault ground motion records.This study derives the optimum parameters of TMDI using the Adaptive Harmony Search algorithm.Structure displacement and total acceleration against earthquake load are analyzed to assess the performance of the TMDI system.The effect of the inerter when connected to different floors is observed,and the results are compared to the conventional tuned mass damper(TMD).It is indicated that the case of connecting the inerter force to the 5th floor gives better results.As a result,TMD and TMDI systems reduce the displacement by 21.87%and 25.45%,respectively,and the total acceleration by 25.45%and 19.59%,respectively.These percentage reductions indicated that the structure resilience against dynamic loads can be increased using control systems. 展开更多
关键词 Passive control optimum design parameter optimization tuned mass damper inerter time domain adaptive harmony search algorithm
下载PDF
Seismic Resilience Analysis of a Concrete-Framed Hospital Building with Viscous Dampers
16
作者 Yinghui Li Dongya An 《Journal of Architectural Research and Development》 2024年第6期58-62,共5页
To study the seismic resilience of a concrete-framed hospital building with viscous dampers,the elastoplastic time history analysis of a three-story concrete-framed hospital building under moderate and rare earthquake... To study the seismic resilience of a concrete-framed hospital building with viscous dampers,the elastoplastic time history analysis of a three-story concrete-framed hospital building under moderate and rare earthquakes was carried out by finite element analysis software.The structure’s overall response was studied,meanwhile,the seismic resilience of the building was evaluated from three aspects:repair cost,repair time,and casualties.The results show that viscous dampers can effectively reduce the repair cost,repair time,and casualties under earthquakes.Compared with the structure without dampers,the repair cost and repair time of the structure with dampers have been reduced by 67%and 69%respectively under moderate earthquakes,42%and 39%respectively under rare earthquakes,and the seismic resilience grade has been increased from zero to one star. 展开更多
关键词 Medical buildings Viscous dampers Seismic resilience Repair cost Repair time
下载PDF
磁流变半主动悬架变负载MRAC控制
17
作者 胡国良 方冰 +2 位作者 喻理梵 张佳伟 朱文才 《南昌工程学院学报》 CAS 2024年第4期21-27,共7页
针对车辆负载变化影响车辆综合性能的不确定性问题,建立了包含负载力的1/4车辆半主动悬架数学模型。选用磁流变阻尼器作为半主动部件,采用模型参考自适应控制(MRAC)衰减振动,运用李雅普诺夫定理证明了该系统的稳定性。以车身加速度、悬... 针对车辆负载变化影响车辆综合性能的不确定性问题,建立了包含负载力的1/4车辆半主动悬架数学模型。选用磁流变阻尼器作为半主动部件,采用模型参考自适应控制(MRAC)衰减振动,运用李雅普诺夫定理证明了该系统的稳定性。以车身加速度、悬架动行程和轮胎动载荷的均方根值为评价指标,进行了变负载工况下的仿真分析。结果表明,在随机路面激励下,基于MRAC的磁流变半主动悬架在空载、负载1 kN和负载2 kN的情况下,悬架的3个性能指标与被动悬架相比均得到明显优化。 展开更多
关键词 半主动悬架 磁流变阻尼器 模型参考自适应控制(mrAC) 李雅普诺夫函数
下载PDF
NEURAL NETWORK REALIZATION OF STRUCTURAL VIBRATION CONTROL USING MR DAMPER
18
作者 周丽 张志成 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期144-150,共7页
Magnetorheological (MR) dampers are one of the most promising new devices for civil infrastructural vibration control applications. However, due to their highly nonlinear dynamic behavior, it is very difficult to obta... Magnetorheological (MR) dampers are one of the most promising new devices for civil infrastructural vibration control applications. However, due to their highly nonlinear dynamic behavior, it is very difficult to obtain of a mathematical model of inverse MR damper that has an explicit relationship between the desired damper force and the command signal (voltage). This force voltage relationship is especially required for the structural vibration control design and simulation using MR dampers. This paper focuses on using a neural network (NN) technique to emulate the inverse MR damper model. The output of the neural network can be used to command the MR damper for generating desired forces. Numerical simulations are also presented to illustrate the effectiveness of this inverse model in semi active vibration control using MR dampers. 展开更多
关键词 magnetorhelogical damper neural networks optimal control inverse dynamics
下载PDF
Semi-active control for vibration attenuation of vehicle suspension with symmetric MR damper
19
作者 王恩荣 马晓青 《Journal of Southeast University(English Edition)》 EI CAS 2003年第3期264-269,共6页
A semi-active force tracking PI controller is formulated and analyzed for a magnetorheological (MR) fluid-based damper in conjunction with a quarter-vehicle model. Two different models of the MR-damper are integrated ... A semi-active force tracking PI controller is formulated and analyzed for a magnetorheological (MR) fluid-based damper in conjunction with a quarter-vehicle model. Two different models of the MR-damper are integrated into the closed-loop system model, which includes: a model based upon the mean force-velocity (f-v) behaviour; and a model synthesis comprising inherent nonsmooth hysteretic force and the force limiting properties of the MR damper. The vehicle models are analyzed to study the vibration attenuation performance of the MR-damper using the semi-active force tracking PI control algorithm. The simulation results are also presented to demonstrate the influence of the damper nonlinearity, specifically the hysteresis, on the suspension performance. The results show that the proposed control strategy can yield superior vibration attenuation performance of the vehicle suspension actuated by the controllable MR-damper not only in the sprung mass resonance and the ride zones, but also in the vicinity of the wheel-hop. The results further show that the presence of damper hystersis deteriorates the suspension performance. 展开更多
关键词 magneto-rheological damper vehicle suspension hysteresis model semi-active control
下载PDF
Adaptive Backstepping Control Design for Semi-Active Suspension of Half-Vehicle With Magnetorheological Damper 被引量:7
20
作者 Khalid El Majdoub Fouad Giri Fatima-Zahra Chaoui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第3期582-596,共15页
This paper investigates the problem of controlling half-vehicle semi-active suspension system involving a magnetorheological(MR)damper.This features a hysteretic behavior that is presently captured through the nonline... This paper investigates the problem of controlling half-vehicle semi-active suspension system involving a magnetorheological(MR)damper.This features a hysteretic behavior that is presently captured through the nonlinear Bouc-Wen model.The control objective is to regulate well the heave and the pitch motions of the chassis despite the road irregularities.The difficulty of the control problem lies in the nonlinearity of the system model,the uncertainty of some of its parameters,and the inaccessibility to measurements of the hysteresis internal state variables.Using Lyapunov control design tools,we design two observers to get online estimates of the hysteresis internal states and a stabilizing adaptive state-feedback regulator.The whole adaptive controller is formally shown to meet the desired control objectives.This theoretical result is confirmed by several simulations demonstrating the supremacy of the latter compared to the skyhook control and passive suspension. 展开更多
关键词 Adaptive control backstepping control Bouc-Wen model half vehicle model magnetorheological(mr)damper semiactive suspension skyhook control state observation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部