In this paper, a finite crack with constant length (Yoffe type crack) propagating in a functionally graded coating with spatially varying elastic properties bonded to a homogeneous substrate of finite thickness unde...In this paper, a finite crack with constant length (Yoffe type crack) propagating in a functionally graded coating with spatially varying elastic properties bonded to a homogeneous substrate of finite thickness under anti-plane loading was studied. A multi-layered model is employed to model arbitrary variations of material properties based on two linearly-distributed material compliance parameters. The mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. Some numerical examples are given to demonstrate the accuracy, efficiency and versatility of the model. The numerical results show that the graded parameters, the thicknesses of the interfacial layer and the two homogeneous layers, the crack size and speed have significant effects on the dynamic fracture behavior.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 10802078 and 10872150)China Postdoctoral Science Foundation (No. 20100471006)
文摘In this paper, a finite crack with constant length (Yoffe type crack) propagating in a functionally graded coating with spatially varying elastic properties bonded to a homogeneous substrate of finite thickness under anti-plane loading was studied. A multi-layered model is employed to model arbitrary variations of material properties based on two linearly-distributed material compliance parameters. The mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. Some numerical examples are given to demonstrate the accuracy, efficiency and versatility of the model. The numerical results show that the graded parameters, the thicknesses of the interfacial layer and the two homogeneous layers, the crack size and speed have significant effects on the dynamic fracture behavior.