The accumulation of Cu^(2+)in water is a potential threat to human health and environment.Dicarboxylic nano-cellulose(DNC)with rich carboxyl groups was prepared through the NaIO_(4)–NaClO_(2) sequential oxidation met...The accumulation of Cu^(2+)in water is a potential threat to human health and environment.Dicarboxylic nano-cellulose(DNC)with rich carboxyl groups was prepared through the NaIO_(4)–NaClO_(2) sequential oxidation meth-od to efficiently remove copper ions,and the Cu 2+adsorption properties and cost were studied.The maximum adsorption capacity reached 184.2 mg/g at pH 6 and an adsorbent dose of 5 g/L.Theoretically,the maximum adsorption capacities of monocarboxylic nanocellulose(MNC),DNC,and tricarboxylic nanocellulose(TNC)with carboxyl groups as the main adsorption sites were calculated to be 228.7,261.3,and 148.1 mg/g,respectively.The Cu^(2+)adsorption costs of MNC,DNC,and TNC were calculated and compared with those of powdered activated carbon(PAC).The Cu^(2+)adsorption capacity of DNC is higher than that of PAC,and the adsorption cost is close to or lower than that of PAC,demonstrating that the DNC prepared by sequential oxidation of NaIO_(4)–NaClO_(2) has competitive adsorption capacity and cost in the treatment of wastewater containing Cu^(2+).展开更多
文摘The accumulation of Cu^(2+)in water is a potential threat to human health and environment.Dicarboxylic nano-cellulose(DNC)with rich carboxyl groups was prepared through the NaIO_(4)–NaClO_(2) sequential oxidation meth-od to efficiently remove copper ions,and the Cu 2+adsorption properties and cost were studied.The maximum adsorption capacity reached 184.2 mg/g at pH 6 and an adsorbent dose of 5 g/L.Theoretically,the maximum adsorption capacities of monocarboxylic nanocellulose(MNC),DNC,and tricarboxylic nanocellulose(TNC)with carboxyl groups as the main adsorption sites were calculated to be 228.7,261.3,and 148.1 mg/g,respectively.The Cu^(2+)adsorption costs of MNC,DNC,and TNC were calculated and compared with those of powdered activated carbon(PAC).The Cu^(2+)adsorption capacity of DNC is higher than that of PAC,and the adsorption cost is close to or lower than that of PAC,demonstrating that the DNC prepared by sequential oxidation of NaIO_(4)–NaClO_(2) has competitive adsorption capacity and cost in the treatment of wastewater containing Cu^(2+).