To enhance link capacity of a wireless link one or more repeater is used between the sender and the receiver. Recent literature deals with multiple parallel links to enhance throughput instead of conventional single p...To enhance link capacity of a wireless link one or more repeater is used between the sender and the receiver. Recent literature deals with multiple parallel links to enhance throughput instead of conventional single path. In case of a multidirectional and multi-hop wireless network, the selection of link of maximum signal to noise ratio (SNR) does not guarantee the maximum throughput. In this paper, we use augmenting path of Ford-Fulkerson algorithm in detection of maximum flow from sender to receiver. To reduce the process time at the sending node, minimum-cut theorem is used to determine maximum flow like power flow of previous work. Using the maximum flow algorithm, we obtain the capacity of multi-hop wireless link higher than the conventional theorem. The concept of the paper is applicable in MANET (Mobile Ad-hoc Network), WSN (Wireless Sensor Network) and CRN (Cognitive Radio Network).展开更多
The minimum cost of capacity expansion for time-limited transportation problem on-demand (MCCETLTPD) is to find such a practicable capacity expansion transportation scheme satisfying the time-limited T along with all ...The minimum cost of capacity expansion for time-limited transportation problem on-demand (MCCETLTPD) is to find such a practicable capacity expansion transportation scheme satisfying the time-limited T along with all origins’ supply and all destinations’ demands as well as the expanding cost is minimum. Actually, MCCETLTPD is a balance transportation problem and a variant problem of minimum cost maximum flow problem. In this paper, by creating a mathematical model and constructing a network with lower and upper arc capacities, MCCETLTPD is transformed into searching feasible flow in the constructed network, and consequently, an algorithm MCCETLTPD-A is developed as MCCETLTPD’s solution method basing minimum cost maximum flow algorithm. Computational study validates that the MCCETLTPD-A algorithm is an efficient approach to solving the MCCETLTPD.展开更多
文摘To enhance link capacity of a wireless link one or more repeater is used between the sender and the receiver. Recent literature deals with multiple parallel links to enhance throughput instead of conventional single path. In case of a multidirectional and multi-hop wireless network, the selection of link of maximum signal to noise ratio (SNR) does not guarantee the maximum throughput. In this paper, we use augmenting path of Ford-Fulkerson algorithm in detection of maximum flow from sender to receiver. To reduce the process time at the sending node, minimum-cut theorem is used to determine maximum flow like power flow of previous work. Using the maximum flow algorithm, we obtain the capacity of multi-hop wireless link higher than the conventional theorem. The concept of the paper is applicable in MANET (Mobile Ad-hoc Network), WSN (Wireless Sensor Network) and CRN (Cognitive Radio Network).
文摘The minimum cost of capacity expansion for time-limited transportation problem on-demand (MCCETLTPD) is to find such a practicable capacity expansion transportation scheme satisfying the time-limited T along with all origins’ supply and all destinations’ demands as well as the expanding cost is minimum. Actually, MCCETLTPD is a balance transportation problem and a variant problem of minimum cost maximum flow problem. In this paper, by creating a mathematical model and constructing a network with lower and upper arc capacities, MCCETLTPD is transformed into searching feasible flow in the constructed network, and consequently, an algorithm MCCETLTPD-A is developed as MCCETLTPD’s solution method basing minimum cost maximum flow algorithm. Computational study validates that the MCCETLTPD-A algorithm is an efficient approach to solving the MCCETLTPD.