Based on the maximum entropy principle, a probability density function (PDF) is derived for the distribution of wave heights in a random wave field, without any more hypothesis. The present PDF, being a non-Rayleigh f...Based on the maximum entropy principle, a probability density function (PDF) is derived for the distribution of wave heights in a random wave field, without any more hypothesis. The present PDF, being a non-Rayleigh form, involves two parameters: the average wave height H— and the state parameter γ. The role of γ in the distribution of wave heights is examined. It is found that γ may be a certain measure of sea state. A least square method for determining γ from measured data is proposed. In virtue of the method, the values of γ are determined for three sea states from the data measured in the East China Sea. The present PDF is compared with the well known Rayleigh PDF of wave height and it is shown that it much better fits the data than the Rayleigh PDF. It is expected that the present PDF would fit some other wave variables, since its derivation is not restricted only to the wave height.展开更多
A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a conti...A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a continuous one, having eight parameters which can be determined in terms of observed data of typhoon occurrence-frequency and extreme wave heights by numerically solving two sets of equations derived in this paper. The model is examined by using it to predict the N-year return-period wave height at two hydrology stations in the Yellow Sea, and the predicted results are compared with those predicted by use of some other compound distribution models. Examinations and comparisons show that the model has some advantages for predicting the N-year return-period wave height in typhoon-affected sea areas.展开更多
A new method of treating maximum wave height as a random variable in reliability analysis of breakwater caissons isproposed. The maximum wave height is expressed as the significant wave height multiplied by the so-cal...A new method of treating maximum wave height as a random variable in reliability analysis of breakwater caissons isproposed. The maximum wave height is expressed as the significant wave height multiplied by the so-called wave height ratio.The proposed wave height ratio is a type of transfer function from the significant wave height to the maximum wave height.Under the condition of a breaking wave, the ratio is intrinsically nonlinear. Therefore, the probability density function for thevariable cannot be easily defined. In this study, however, it can be derived from the relationship between the maximum andsignificant waves in a nonbreaking environment. Some examples are shown to validate the derived probability density functionfor the wave ratio parameter. By introducing the wave height ratio into reliability analysis of caisson breakwater, the maximumwave height can be used as an independent and primary random variable, which means that the risk of caisson failure during itslifetime can be evaluated realistically.展开更多
A typhoon leading is an important natural disaster to many disasters to China. A giant wave caused by it has brought large threat for an offshore project. Based on the maximum entropy principle,one new model which has...A typhoon leading is an important natural disaster to many disasters to China. A giant wave caused by it has brought large threat for an offshore project. Based on the maximum entropy principle,one new model which has 4 undetermined parameters is constructed,which is called the discrete maximum entropy probabilistic model. In practical applications,the design wave height is considered as soon as possible in a typhoon affected sea areas,the result fits the observed data well. Further more this model does not have the priority compared with other distributions as Poisson distribution. The model provides a theoretical basis for the engineering design more reasonable when considering typhoon factors comprehensively.展开更多
At 13:46 on March 11, 2011(Beijing time), an earthquake of Mw=9.0 occurred in Japan. By comparing the tsunami data from Guanhekou marine station with other tsunami wave observation gathered from southeast coastal a...At 13:46 on March 11, 2011(Beijing time), an earthquake of Mw=9.0 occurred in Japan. By comparing the tsunami data from Guanhekou marine station with other tsunami wave observation gathered from southeast coastal area of China, it was evident that, only in Guanhekou, the position of the maximum wave height appeared in the middle part rather than in the front of the tsunami wave train. A numerical model of tsunami propagation based on 2-D nonlinear shallow water equations was built to study the impact range and main causes of the special tsunami waveform discovered in Jiangsu coastal area. The results showed that nearly three-quarters of the Jiangsu coastal area, mainly comprised the part north of the radial sand ridges, reached its maximum tsunami wave height in the middle part of the wave train. The main cause of the special waveform was the special underwater topography condition of the Yellow Sea and the East China Sea area, which influenced the tsunami propagation and waveform significantly. Although land boundary reflection brought an effect on the position of the maximum wave height to a certain extent, as the limits of the incident waveform and distances between the observation points and shore, it was not the dominant influence factor of the special waveform. Coriolis force's impact on the tsunami waves was so weak that it was not the main cause for the special phenomenon in Jiangsu coastal area. The study reminds us that the most destructive wave might not appear in the first one in tsunami wave train.展开更多
The current storm wave hazard assessment tends to rely on a statistical method using wave models and fewer historical data which do not consider the effects of tidal and storm surge.In this paper,the wave-current coup...The current storm wave hazard assessment tends to rely on a statistical method using wave models and fewer historical data which do not consider the effects of tidal and storm surge.In this paper,the wave-current coupled model ADCIRC+SWAN was used to hindcast storm events in the last 30 years.We simulated storm wave on the basis of a large set of historical storms in the North-West Pacific Basin between 1985 and 2015 in Houshui Bay using the wave-current coupled model ADCIRC+SWAN to obtain the storm wave level maps.The results were used for the statistical analysis of the maximum significant wave heights in Houshui Bay and the behavior of wave associated with storm track.Comparisons made between observations and simulated results during typhoon Rammasun(2014)indicate agreement.In addition,results demonstrate that significant wave height in Houshui Bay is dominated by the storm wind velocity and the storm track.Two groups of synthetic storm tracks were designed to further investigate the worst case of typhoon scenarios.The storm wave analysis method developed for the Houshui Bay is significant in assisting government's decision-making in rational planning of deep sea net-cage culture.The method can be applied to other bays in the Hainan Island as well.展开更多
The maximum entropy principle (MEP) method and the corresponding probability evaluation method are introduced, and the maximum entropy probability distribution expression is deduced in moment of the second order. Full...The maximum entropy principle (MEP) method and the corresponding probability evaluation method are introduced, and the maximum entropy probability distribution expression is deduced in moment of the second order. Fully developed wave height distribution in deep water and wave height and period distribution for different depths in wind wave channel experiment are obtained from the MEP method, and the results are compared with the distribution and the experimental histogram. The wave height and period distribution for the Lianyungang port is also obtained by the MEP method, and the results are compared with the Weibull distribution and the field histogram.展开更多
Spectral bandwidth is a relevant parameter of water wave evolution and is commonly used to represent the number of wave components involved in wave-wave interactions.However,whether these two parameters are equivalent...Spectral bandwidth is a relevant parameter of water wave evolution and is commonly used to represent the number of wave components involved in wave-wave interactions.However,whether these two parameters are equivalent is an open question.Following the high-order spectral method and taking the weakly modulated Stokes wave train as the initial condition,the relationship between the spectral bandwidth and the number of wave components is investigated in this work.The results showed that the number of wave components can vary with the same spectral bandwidth and that distinct wave profiles emerge from different numbers of wave components.With a new definition of significant wave components,the characteristics of this parameter in the long-time wave evolution are discussed,along with its relationship with common parameters,including the wave surface maximum and the wave height.The results reveal that the wave surface evolution trend of different numbers of significant wave components(Ns)is the same from a holistic perspective,while the difference between them also exists,mainly in locations where extreme waves occur.Furthermore,there is a negative correlation between r(aj/a_(0))and wave surface maximum(η_(max)/a_(0))and wave height(H_(max)and Hs).The evolution trends of the relative errors(RE)ofη_(max)/a_(0),H_(max),and Hs of different Ns show the periodic recurrence of modulation and demodulation in the early stage when the Benjamin-Feir instability is dominated.The difference is that in the later stage,the RE ofη_(max)/a_(0)and H_(max)is chaotic and irregular,while those of Hs gradually stabilize near an equilibrium value.Furthermore,we discuss the relationship between the mean relative error(MRE)and r.Forη_(max)/a_(0),MRE and r show a logarithmic relationship,while for H_(max)and Hs,a quadratic relationship exists between them.Therefore,the choice of Ns is also important for extreme waves and is particularly meaningful for wave generation experiments in the wave flume.展开更多
文摘Based on the maximum entropy principle, a probability density function (PDF) is derived for the distribution of wave heights in a random wave field, without any more hypothesis. The present PDF, being a non-Rayleigh form, involves two parameters: the average wave height H— and the state parameter γ. The role of γ in the distribution of wave heights is examined. It is found that γ may be a certain measure of sea state. A least square method for determining γ from measured data is proposed. In virtue of the method, the values of γ are determined for three sea states from the data measured in the East China Sea. The present PDF is compared with the well known Rayleigh PDF of wave height and it is shown that it much better fits the data than the Rayleigh PDF. It is expected that the present PDF would fit some other wave variables, since its derivation is not restricted only to the wave height.
基金supported by the Open Fund of the Key Laboratory of Research on Marine Hazards Forecasting (Grant No.LOMF1101)the Shanghai Typhoon Research Fund (Grant No. 2009ST05)the National Natural Science Foundation of China(Grant No. 40776006)
文摘A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a continuous one, having eight parameters which can be determined in terms of observed data of typhoon occurrence-frequency and extreme wave heights by numerically solving two sets of equations derived in this paper. The model is examined by using it to predict the N-year return-period wave height at two hydrology stations in the Yellow Sea, and the predicted results are compared with those predicted by use of some other compound distribution models. Examinations and comparisons show that the model has some advantages for predicting the N-year return-period wave height in typhoon-affected sea areas.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea Government Ministry of Knowledge Economy(Grant No.20123030020110)
文摘A new method of treating maximum wave height as a random variable in reliability analysis of breakwater caissons isproposed. The maximum wave height is expressed as the significant wave height multiplied by the so-called wave height ratio.The proposed wave height ratio is a type of transfer function from the significant wave height to the maximum wave height.Under the condition of a breaking wave, the ratio is intrinsically nonlinear. Therefore, the probability density function for thevariable cannot be easily defined. In this study, however, it can be derived from the relationship between the maximum andsignificant waves in a nonbreaking environment. Some examples are shown to validate the derived probability density functionfor the wave ratio parameter. By introducing the wave height ratio into reliability analysis of caisson breakwater, the maximumwave height can be used as an independent and primary random variable, which means that the risk of caisson failure during itslifetime can be evaluated realistically.
基金Open Fund of the Key Laboratory of Research on Marine Hazards Forecasting under contract No. LOMF1101the National Natural Science Foundation of China under contract No. 40776006Shanghai Typhoon Research Fund under contract No. 2009ST05
文摘A typhoon leading is an important natural disaster to many disasters to China. A giant wave caused by it has brought large threat for an offshore project. Based on the maximum entropy principle,one new model which has 4 undetermined parameters is constructed,which is called the discrete maximum entropy probabilistic model. In practical applications,the design wave height is considered as soon as possible in a typhoon affected sea areas,the result fits the observed data well. Further more this model does not have the priority compared with other distributions as Poisson distribution. The model provides a theoretical basis for the engineering design more reasonable when considering typhoon factors comprehensively.
基金financially supported by the Fundamental Research Funds for the Central Universities,Hohai University(Grant No.2011B06014)the Fundamental Research Funds for the Central Public Welfare Research Institutes,Nanjing Hydraulic Research Institute(Grant No.YN912001)+2 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2012411)the National Science & Technology Pillar Program(Grant No.2012BAB03B01)the Cultivation of Jiangsu Province Graduate Innovation Project(Grant No.KYZZ_0151)
文摘At 13:46 on March 11, 2011(Beijing time), an earthquake of Mw=9.0 occurred in Japan. By comparing the tsunami data from Guanhekou marine station with other tsunami wave observation gathered from southeast coastal area of China, it was evident that, only in Guanhekou, the position of the maximum wave height appeared in the middle part rather than in the front of the tsunami wave train. A numerical model of tsunami propagation based on 2-D nonlinear shallow water equations was built to study the impact range and main causes of the special tsunami waveform discovered in Jiangsu coastal area. The results showed that nearly three-quarters of the Jiangsu coastal area, mainly comprised the part north of the radial sand ridges, reached its maximum tsunami wave height in the middle part of the wave train. The main cause of the special waveform was the special underwater topography condition of the Yellow Sea and the East China Sea area, which influenced the tsunami propagation and waveform significantly. Although land boundary reflection brought an effect on the position of the maximum wave height to a certain extent, as the limits of the incident waveform and distances between the observation points and shore, it was not the dominant influence factor of the special waveform. Coriolis force's impact on the tsunami waves was so weak that it was not the main cause for the special phenomenon in Jiangsu coastal area. The study reminds us that the most destructive wave might not appear in the first one in tsunami wave train.
基金supported by the Technology Development Foundation for Research Institutes of Hainan Province(No.TV45987)
文摘The current storm wave hazard assessment tends to rely on a statistical method using wave models and fewer historical data which do not consider the effects of tidal and storm surge.In this paper,the wave-current coupled model ADCIRC+SWAN was used to hindcast storm events in the last 30 years.We simulated storm wave on the basis of a large set of historical storms in the North-West Pacific Basin between 1985 and 2015 in Houshui Bay using the wave-current coupled model ADCIRC+SWAN to obtain the storm wave level maps.The results were used for the statistical analysis of the maximum significant wave heights in Houshui Bay and the behavior of wave associated with storm track.Comparisons made between observations and simulated results during typhoon Rammasun(2014)indicate agreement.In addition,results demonstrate that significant wave height in Houshui Bay is dominated by the storm wind velocity and the storm track.Two groups of synthetic storm tracks were designed to further investigate the worst case of typhoon scenarios.The storm wave analysis method developed for the Houshui Bay is significant in assisting government's decision-making in rational planning of deep sea net-cage culture.The method can be applied to other bays in the Hainan Island as well.
文摘The maximum entropy principle (MEP) method and the corresponding probability evaluation method are introduced, and the maximum entropy probability distribution expression is deduced in moment of the second order. Fully developed wave height distribution in deep water and wave height and period distribution for different depths in wind wave channel experiment are obtained from the MEP method, and the results are compared with the distribution and the experimental histogram. The wave height and period distribution for the Lianyungang port is also obtained by the MEP method, and the results are compared with the Weibull distribution and the field histogram.
基金the National Key Research and Development Program of China(Grant No.2022YFE0104500)the National Natural Science Foundation of China(Grant No.52271271)the Major Science and Technology Project of the Ministry of Water Resources of the People’s Republic of China(Grant No.SKS-2022025).
文摘Spectral bandwidth is a relevant parameter of water wave evolution and is commonly used to represent the number of wave components involved in wave-wave interactions.However,whether these two parameters are equivalent is an open question.Following the high-order spectral method and taking the weakly modulated Stokes wave train as the initial condition,the relationship between the spectral bandwidth and the number of wave components is investigated in this work.The results showed that the number of wave components can vary with the same spectral bandwidth and that distinct wave profiles emerge from different numbers of wave components.With a new definition of significant wave components,the characteristics of this parameter in the long-time wave evolution are discussed,along with its relationship with common parameters,including the wave surface maximum and the wave height.The results reveal that the wave surface evolution trend of different numbers of significant wave components(Ns)is the same from a holistic perspective,while the difference between them also exists,mainly in locations where extreme waves occur.Furthermore,there is a negative correlation between r(aj/a_(0))and wave surface maximum(η_(max)/a_(0))and wave height(H_(max)and Hs).The evolution trends of the relative errors(RE)ofη_(max)/a_(0),H_(max),and Hs of different Ns show the periodic recurrence of modulation and demodulation in the early stage when the Benjamin-Feir instability is dominated.The difference is that in the later stage,the RE ofη_(max)/a_(0)and H_(max)is chaotic and irregular,while those of Hs gradually stabilize near an equilibrium value.Furthermore,we discuss the relationship between the mean relative error(MRE)and r.Forη_(max)/a_(0),MRE and r show a logarithmic relationship,while for H_(max)and Hs,a quadratic relationship exists between them.Therefore,the choice of Ns is also important for extreme waves and is particularly meaningful for wave generation experiments in the wave flume.