期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A measurement-driven adaptive probability hypothesis density filter for multitarget tracking 被引量:9
1
作者 Si Weijian Wang Liwei Qu Zhiyu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第6期1689-1698,共10页
This paper studies the dynamic estimation problem for multitarget tracking. A novel gat- ing strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiven... This paper studies the dynamic estimation problem for multitarget tracking. A novel gat- ing strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiveness of the probability hypothesis density (PHD) filter. Firstly, a measurement-driven mechanism based on this gating technique is designed to classify the measure- ments. In this mechanism, only the measurements for the existing targets are considered in the update step of the existing targets while the measurements of newborn targets are used for exploring newborn targets. Secondly, the gating strategy enables the development of a heuristic state estima- tion algorithm when sequential Monte Carlo (SMC) implementation of the PHD filter is investi- gated, where the measurements are used to drive the particle clustering within the space gate. The resulting PHD filter can achieve a more robust and accurate estimation of the existing targets by reducing the interference from clutter. Moreover, the target birth intensity can be adaptive to detect newborn targets, which is in accordance with the birth measurements. Simulation results demonstrate the computational efficiency and tracking performance of the proposed algorithm. 展开更多
关键词 ADAPTIVE measurement-driven Multitarget trackin Probability hypothesis density Sequential Monte Carlo
原文传递
An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering 被引量:1
2
作者 Tong-yang JIANG Mei-qin LIU +1 位作者 Xie WANG Sen-lin ZHANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第6期445-457,共13页
We propose an efficient measurement-driven sequential Monte Carlo multi-Bernoulli(SMC-MB) filter for multi-target filtering in the presence of clutter and missing detection. The survival and birth measurements are dis... We propose an efficient measurement-driven sequential Monte Carlo multi-Bernoulli(SMC-MB) filter for multi-target filtering in the presence of clutter and missing detection. The survival and birth measurements are distinguished from the original measurements using the gating technique. Then the survival measurements are used to update both survival and birth targets, and the birth measurements are used to update only the birth targets.Since most clutter measurements do not participate in the update step, the computing time is reduced significantly.Simulation results demonstrate that the proposed approach improves the real-time performance without degradation of filtering performance. 展开更多
关键词 measurement-driven Gating technique Sequential Monte Carlo Multi-Bernoulli filter Multi-target filtering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部