Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and ar...Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.展开更多
Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic device...Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices.展开更多
A servo press is a new type of mechanical press that is driven by programmable motors and offers superior performance such as low noise, excellent efficiency and high precision for metal forming operations. Similar to...A servo press is a new type of mechanical press that is driven by programmable motors and offers superior performance such as low noise, excellent efficiency and high precision for metal forming operations. Similar to multi-link mechanical presses, a servo mechanical press tends to grow in size as the tonnage increases that calls for larger, heavy duty servo motors, which could be expensive and may not even be available. In this paper, a new concept of servo mechanical press with redundant actuation is proposed firstly using two servo motors driving one input shaft, i.e. one-point-two-motor mode that makes it possible to produce a larger press with available servomotors. Then the punching mechanism design is detailed. The performance indices are set up including mechanical advantage reciprocal and link force ratios. A bounded feasible solution space is constructed for dimensional synthesis based on non-dimensional link lengths and assembly conditions. The performance atlases are depicted over the bounded feasible solution space that lead to a visual solution of the punching mechanism with global optimization. Finally, case studies are given to illustrate the design method with visual global optimization, and a prototype with 200 t punching force is being developed in our laboratory to demonstrate efficacy of the new concept for servo mechanical press. The presented research provides a feasible solution to the development of heavy-duty servo mechanical presses and finds potential applications in the development of other types of heavy equipments with electric drive.展开更多
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c...A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.展开更多
A kind of automatic shift schedule optimization method is provided for a tracked vehicle with hydrodynamic-mechanical transmission in order to improve its dynamic performance. A dynamic model of integrated hydrodynami...A kind of automatic shift schedule optimization method is provided for a tracked vehicle with hydrodynamic-mechanical transmission in order to improve its dynamic performance. A dynamic model of integrated hydrodynamic-mechanical transmission is built in MATLAB/Simdriveline environment, and an optimum shift schedule is derived by using iSight software to call the dynamic model above, then the shift schedule is achieved after optimization. The simulation results show that the method is significant to improve the dynamic performance and gear-shifting smoothness theoretically and practically.展开更多
Erratum to:International Journal of Minerals, Metallurgy and Materials Volume 26, Number 9, September 2019, Page 1151https://doi.org/10.1007/s12613-019-1854-1The original version of this article unfortunately containe...Erratum to:International Journal of Minerals, Metallurgy and Materials Volume 26, Number 9, September 2019, Page 1151https://doi.org/10.1007/s12613-019-1854-1The original version of this article unfortunately contained a mistake. The presentation of Fig. 11 was incorrect. The correct version is given below:展开更多
In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec han...In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec hanical system design and analysis process. This system is based on an emerg ing web-based Content Management System (CMS) called eXtended Object Oriented P ortal System (XOOPS). Due to the Open Source Status of the XOOPS CMS, programs d eveloped with this framework can be further customized to satisfy the demands of the user. To introduce the use of this framework, this paper exams three differ ent types of mechanical design and analysis problems. First, a repetitive design consideration and calculation process is transferred into WMADF programs to gai n efficiency for wired collaborative team. Second, the considered product solid model is created directly through the use of XOOPS program and Microsoft Compone nt Object Model (COM) instances. To the end of the paper, an example linked with ANSYS is used to indicate the possible application of this framework.展开更多
Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a cent...Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.展开更多
The concept of Intelligent Mechanical Design (IMD) is presented to show how a mechanical structure can be designed to affect robot controllability, simplification and task performance. Exploring this concept produce...The concept of Intelligent Mechanical Design (IMD) is presented to show how a mechanical structure can be designed to affect robot controllability, simplification and task performance. Exploring this concept produces landmarks in the territory of mechanical robot design in the form of seven design principles. The design principles, which we call the Mecha-Telligence Principles (MTP), provide guidance on how to design mechanics for autonomous mobile robots. These principles guide us to ask the right questions when investigating issues concerning self-controllable, reliable, feasible, and compatible mechanics for autonomous mobile robots. To show how MTP can be applied in the design process we propose a novel methodology, named as Mecha-Telligence Methodology (MTM). Mechanical design by the proposed methodology is based on preference classification of the robot specification described by interaction of the robot with its environment and the physical parameters of the robot mechatronics. After defining new terms, we investigate the feasibility of the proposed methodology to the mechanical design of an autonomous mobile sewer inspection robot. In this industrial project we show how a passive-active intelligent moving mechanism can be designed using the MTM and employed in the field.展开更多
Virtually all conventional optimizations are Performed in a batch computer environment. No graphic information during the optimization process is provided. The research tactics and implementation procedure of interact...Virtually all conventional optimizations are Performed in a batch computer environment. No graphic information during the optimization process is provided. The research tactics and implementation procedure of interactivegraphics in mechanical optimum design are presented. An interactive Graphics Mechanical Optimum Design Program(IGMODP) for microcomputers is developed. The example of wheeled loader' s working device optimum design usingIGMODP is carried out.展开更多
Long-term, body-adhered medical devices rely on an adhesive interface to maintain contact with the patient. The greatest threat to on-body adhesion is mechanical stress imparted on the medical device. Several factors ...Long-term, body-adhered medical devices rely on an adhesive interface to maintain contact with the patient. The greatest threat to on-body adhesion is mechanical stress imparted on the medical device. Several factors contribute to the ability of the device to withstand such stresses, such as the mechanical design, shape, and size of the device. This analysis investigates the impact that design changes to the device have on the stress and strain experienced by the system when acted on by a stressor. The analysis also identifies the design changes that are most effective at reducing the stress and strain. An explicit dynamic finite element analysis method was used to simulate several design iterations and a regression analysis was performed to quantify the relationship between design and resultant stress and strain. The shape, height, size, and taper of the medical device were modified, and the results indicate that, to reduce stress and strain in the system, the device should resemble a square in shape, be short in height, and small in size with a large taper. The square shape experienced 17.5% less stress compared to the next best performing shape. A 10% reduction in device height resulted in a 21% reduction in stress and 24% reduction in strain. A 20% reduction in device size caused a 7% reduction in stress and 2% reduction in strain. A 20% increase in device taper size led to a negligible reduction in stress and a 6% reduction in strain. The height of the device had the greatest impact on the resultant stress and strain.展开更多
A design project was used in junior level mechanical design course to challenge the students' creativity skills. Beside the theoretical foundation of the course subject, the students were introduced to several profes...A design project was used in junior level mechanical design course to challenge the students' creativity skills. Beside the theoretical foundation of the course subject, the students were introduced to several professional skills such as: decision making tools, technical review meetings, interaction with customers, and teamwork skills. The design challenge was to develop a bike rack to meet a list of technical and marketing constraints. Details of the project requirements are presented with a brief overview of the main project mentoring tools. Students' creativity is discussed through two samples of the student work. It was noticed that, the basic creativity skills of the students can be improved by using some of the training tools, however, the students vary in their response to this training.展开更多
The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-dir...The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-directional obstacle-crossing ability.During the motion,most of the wheel-legged robots’centroid fluctuates violently,which damages the stability of the load.What’s more,many designs of the obstacle-crossing part and transformation-driving part of this structure are highly coupled,which limits its optimal performance in both aspects.This paper presents a novel wheel-legged robot with a rim-shaped changeable wheel,which has a bi-directional and smooth obstacle-crossing ability.Based on the kinematic model,the geometric parameters of the wheel structure and the design variables of the driving four-bar mechanism are optimized separately.The kinetostatics model of the mobile platform when climbing stairs is established to determine the body length and angular velocity of the driving wheels.A pro-totype is made according to the optimal parameters.Experiments show that the prototype installed with the novel transformable wheels can overcome steps with a height of 1.52 times of its wheel radius with less fluctuation of its centroid and performs good locomotion capabilities in different environments.展开更多
The technique of cutting slabstone with stone-sawi ng machine is analyzed completely. A new kind of cutting movement trajectory is gi ven whose actual cutting efficiency is near to 100%. It can reduce the energy w ear...The technique of cutting slabstone with stone-sawi ng machine is analyzed completely. A new kind of cutting movement trajectory is gi ven whose actual cutting efficiency is near to 100%. It can reduce the energy w earing greatly, and the surface quality of the product is improved to the utmost extent. The design mechanism of the optimal cutting movement trajectory system structure is analyzed incisively. At the same time, the principle of the complex movement of horizontal movement and swing is researched. The optimal design scheme of th e cutting movement trajectory system structure is set up. The choice method to g et the superior value of the movement system structure is found. The mathematics function formula is established which exhibits the relationship between the par ameter of the complex movement structure and that of the system movement structu re. By the formula, the precision value of the offset can be figured out. The r ule is adapted to different types of energy-saving stone-sawing machines. The complex movement structure of horizontal movement and swing is designed to f ulfill the cutting movement. It can make the saw frame move up with the hanging pod deviating from the vertical direction. At the same time, the saw frame have a down-movement. Then the sum of the two movements is near to zero, and the saw blade and the stone can keep in touch during the whole horizontal cutting. The result is that the actual cutting efficiency is 100%. Also, when the hanging pod moves to the limited position, the saw frame can keep the original inertia, and continue to swing up. It makes the back-cutting have high energy-storing. The optimal design of the eccentricity balance wheel is done. The mathematics fo rmula for expressing the movement system structure is deduced. The calculation m ethod and formula is set up which is used to get the value of important componen ts such as offset. The choice method and formula of elasticity distortion coeffi cient is set up when the saw frame moves smoothly. It is concluded that the offs et is the key dimension to actualize the optimal cutting movement trajectory. The resolving of the technical problems discussed above offers a theoretic and technical basis for optimal design of energy-saving stone-sawing machines.展开更多
By means of Solid Works, three-dimensional model of automated assembly system was established, and kinematic simulation based on Solid Works Motion of assembly process for relay was performed. The simulation results p...By means of Solid Works, three-dimensional model of automated assembly system was established, and kinematic simulation based on Solid Works Motion of assembly process for relay was performed. The simulation results proved the feasibility of mechanical design. Eventually, the productivity was estimated based on simulation analysis. The mechanical design provided a solution with high reference value to practical design of automated assembly system for relay.展开更多
In view of the shortcomings of traditional teaching in the Mechanical Design Fundamentals course,the teaching resources are integrated,the teaching content,teaching methods,and assessment methods are reformed,scientif...In view of the shortcomings of traditional teaching in the Mechanical Design Fundamentals course,the teaching resources are integrated,the teaching content,teaching methods,and assessment methods are reformed,scientific research results are introduced into course teaching,and the task-driven teaching practice is applied.These measures have improved classroom activity,stimulated independent learning,and laid the foundation for the cultivation of students’engineering literacy and innovative ability.展开更多
This study investigates the design of the royalty rate in a first-price auction across three types of investments:incremental and lumpy with or without an exogenously given intensity.A bidder’s investment cost compri...This study investigates the design of the royalty rate in a first-price auction across three types of investments:incremental and lumpy with or without an exogenously given intensity.A bidder’s investment cost comprises private information.This,together with the stochastic evolution of the price of the output generated from the auctioned project,precludes the seller from setting the exact dates of investment with the winner.However,the seller can set the royalty rate to equate the winner’s royalty payment with the winner’s information rent so that the winner acts as if to maximize the seller’s revenue.We derive two main conclusions.First,compared with the case in which investment is lumpy with an exogenously given intensity,the seller can set a lower royalty rate on incremental investment because she can collect additional royalty payments from the winner,who has the option to later expand capacity.Second,the impact of output price uncertainty on the optimal royalty rate for the three types of investments exhibits two different patterns.When investment is either incremental or lumpy with an exogenously given intensity,greater output price uncertainty reduces the royalty rate.When investment is lumpy with variable intensity,greater output uncertainty raises the royalty rate.Our results imply that auctioneers may charge differential royalty rates for different types of investments.展开更多
When a curling rock slides on an ice sheet with an initial rotation,a lateral movement occurs,which is known as the curling phenomenon.The force of friction between the curling rock and the ice sheet changes continual...When a curling rock slides on an ice sheet with an initial rotation,a lateral movement occurs,which is known as the curling phenomenon.The force of friction between the curling rock and the ice sheet changes continually with changes in the environment;thus,the sport of curling requires great skill and experience.The throwing of the curling rock is a great challenge in robot design and control,and existing curling robots usually adopt a combination scheme of a wheel chassis and gripper that differs significantly from human throwing movements.A hexapod curling robot that imitates human kicking,sliding,pushing,and curling rock rotating was designed and manufactured by our group,and completed a perfect show during the Beijing 2022 Winter Olympics Games.Smooth switching between the walking and throwing tasks is realized by the robot’s morphology transformation based on leg configuration switching.The robot’s controlling parameters,which include the kicking velocity v_(k),pushing velocity v_(p),orientation angle θc,and rotation velocityω,are determined by aiming and sliding models according to the estimated equivalent friction coefficientμ_(equ)and ratio e of the front and back frictions.The stable errors between the target and actual stopping points converge to 0.2 and 1.105 m in the simulations and experiments,respectively,and the error shown in the experiments is close to that of a well-trained wheelchair curling athlete.This robot holds promise for helping ice-makers rectify ice sheet friction or assisting in athlete training.展开更多
As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promisi...As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.展开更多
文摘Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1C1C1008831).This work was also supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Ministry of Trade,Industry and Energy of Korea(No.RS-2023-00244330).S J P was supported by Basic Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2018R1A6A1A03025526).
文摘Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices.
基金supported by National Natural Science Foundation of China (Grant No. 50875161, No. 50405017)National Hi-Tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z118)
文摘A servo press is a new type of mechanical press that is driven by programmable motors and offers superior performance such as low noise, excellent efficiency and high precision for metal forming operations. Similar to multi-link mechanical presses, a servo mechanical press tends to grow in size as the tonnage increases that calls for larger, heavy duty servo motors, which could be expensive and may not even be available. In this paper, a new concept of servo mechanical press with redundant actuation is proposed firstly using two servo motors driving one input shaft, i.e. one-point-two-motor mode that makes it possible to produce a larger press with available servomotors. Then the punching mechanism design is detailed. The performance indices are set up including mechanical advantage reciprocal and link force ratios. A bounded feasible solution space is constructed for dimensional synthesis based on non-dimensional link lengths and assembly conditions. The performance atlases are depicted over the bounded feasible solution space that lead to a visual solution of the punching mechanism with global optimization. Finally, case studies are given to illustrate the design method with visual global optimization, and a prototype with 200 t punching force is being developed in our laboratory to demonstrate efficacy of the new concept for servo mechanical press. The presented research provides a feasible solution to the development of heavy-duty servo mechanical presses and finds potential applications in the development of other types of heavy equipments with electric drive.
基金Projects(61463009,11264005,11361014)supported by the National Natural Science Foundation of ChinaProject([2013]2082)supported by the Science Technology Foundation of Guizhou Province,China
文摘A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.
基金Sponsored by the National Natural Science Foudation of China(50905016)
文摘A kind of automatic shift schedule optimization method is provided for a tracked vehicle with hydrodynamic-mechanical transmission in order to improve its dynamic performance. A dynamic model of integrated hydrodynamic-mechanical transmission is built in MATLAB/Simdriveline environment, and an optimum shift schedule is derived by using iSight software to call the dynamic model above, then the shift schedule is achieved after optimization. The simulation results show that the method is significant to improve the dynamic performance and gear-shifting smoothness theoretically and practically.
文摘Erratum to:International Journal of Minerals, Metallurgy and Materials Volume 26, Number 9, September 2019, Page 1151https://doi.org/10.1007/s12613-019-1854-1The original version of this article unfortunately contained a mistake. The presentation of Fig. 11 was incorrect. The correct version is given below:
文摘In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec hanical system design and analysis process. This system is based on an emerg ing web-based Content Management System (CMS) called eXtended Object Oriented P ortal System (XOOPS). Due to the Open Source Status of the XOOPS CMS, programs d eveloped with this framework can be further customized to satisfy the demands of the user. To introduce the use of this framework, this paper exams three differ ent types of mechanical design and analysis problems. First, a repetitive design consideration and calculation process is transferred into WMADF programs to gai n efficiency for wired collaborative team. Second, the considered product solid model is created directly through the use of XOOPS program and Microsoft Compone nt Object Model (COM) instances. To the end of the paper, an example linked with ANSYS is used to indicate the possible application of this framework.
基金supported by the National Natural Science Foundation of China,China(52203066,51973157,51673148 and 51678411)the Science and Technology Plans of Tianjin,China(19PTSYJC00010)+3 种基金China Postdoctoral Science Foundation Grant,China(2019M651047)the Tianjin Research Innovation Project for Postgraduate Students,China(2020YJSB062)the Tianjin Municipal College Student’Innovation And Entrepreneurship Training Program,China(202110058052)the National Innovation and Entrepreneurship Training Program for College Students,China(202110058017)。
文摘Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.
文摘The concept of Intelligent Mechanical Design (IMD) is presented to show how a mechanical structure can be designed to affect robot controllability, simplification and task performance. Exploring this concept produces landmarks in the territory of mechanical robot design in the form of seven design principles. The design principles, which we call the Mecha-Telligence Principles (MTP), provide guidance on how to design mechanics for autonomous mobile robots. These principles guide us to ask the right questions when investigating issues concerning self-controllable, reliable, feasible, and compatible mechanics for autonomous mobile robots. To show how MTP can be applied in the design process we propose a novel methodology, named as Mecha-Telligence Methodology (MTM). Mechanical design by the proposed methodology is based on preference classification of the robot specification described by interaction of the robot with its environment and the physical parameters of the robot mechatronics. After defining new terms, we investigate the feasibility of the proposed methodology to the mechanical design of an autonomous mobile sewer inspection robot. In this industrial project we show how a passive-active intelligent moving mechanism can be designed using the MTM and employed in the field.
文摘Virtually all conventional optimizations are Performed in a batch computer environment. No graphic information during the optimization process is provided. The research tactics and implementation procedure of interactivegraphics in mechanical optimum design are presented. An interactive Graphics Mechanical Optimum Design Program(IGMODP) for microcomputers is developed. The example of wheeled loader' s working device optimum design usingIGMODP is carried out.
文摘Long-term, body-adhered medical devices rely on an adhesive interface to maintain contact with the patient. The greatest threat to on-body adhesion is mechanical stress imparted on the medical device. Several factors contribute to the ability of the device to withstand such stresses, such as the mechanical design, shape, and size of the device. This analysis investigates the impact that design changes to the device have on the stress and strain experienced by the system when acted on by a stressor. The analysis also identifies the design changes that are most effective at reducing the stress and strain. An explicit dynamic finite element analysis method was used to simulate several design iterations and a regression analysis was performed to quantify the relationship between design and resultant stress and strain. The shape, height, size, and taper of the medical device were modified, and the results indicate that, to reduce stress and strain in the system, the device should resemble a square in shape, be short in height, and small in size with a large taper. The square shape experienced 17.5% less stress compared to the next best performing shape. A 10% reduction in device height resulted in a 21% reduction in stress and 24% reduction in strain. A 20% reduction in device size caused a 7% reduction in stress and 2% reduction in strain. A 20% increase in device taper size led to a negligible reduction in stress and a 6% reduction in strain. The height of the device had the greatest impact on the resultant stress and strain.
文摘A design project was used in junior level mechanical design course to challenge the students' creativity skills. Beside the theoretical foundation of the course subject, the students were introduced to several professional skills such as: decision making tools, technical review meetings, interaction with customers, and teamwork skills. The design challenge was to develop a bike rack to meet a list of technical and marketing constraints. Details of the project requirements are presented with a brief overview of the main project mentoring tools. Students' creativity is discussed through two samples of the student work. It was noticed that, the basic creativity skills of the students can be improved by using some of the training tools, however, the students vary in their response to this training.
基金Supported by State Key Lab of Mechanical System and Vibration Project of China(Grant No.MSVZD202008).
文摘The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-directional obstacle-crossing ability.During the motion,most of the wheel-legged robots’centroid fluctuates violently,which damages the stability of the load.What’s more,many designs of the obstacle-crossing part and transformation-driving part of this structure are highly coupled,which limits its optimal performance in both aspects.This paper presents a novel wheel-legged robot with a rim-shaped changeable wheel,which has a bi-directional and smooth obstacle-crossing ability.Based on the kinematic model,the geometric parameters of the wheel structure and the design variables of the driving four-bar mechanism are optimized separately.The kinetostatics model of the mobile platform when climbing stairs is established to determine the body length and angular velocity of the driving wheels.A pro-totype is made according to the optimal parameters.Experiments show that the prototype installed with the novel transformable wheels can overcome steps with a height of 1.52 times of its wheel radius with less fluctuation of its centroid and performs good locomotion capabilities in different environments.
文摘The technique of cutting slabstone with stone-sawi ng machine is analyzed completely. A new kind of cutting movement trajectory is gi ven whose actual cutting efficiency is near to 100%. It can reduce the energy w earing greatly, and the surface quality of the product is improved to the utmost extent. The design mechanism of the optimal cutting movement trajectory system structure is analyzed incisively. At the same time, the principle of the complex movement of horizontal movement and swing is researched. The optimal design scheme of th e cutting movement trajectory system structure is set up. The choice method to g et the superior value of the movement system structure is found. The mathematics function formula is established which exhibits the relationship between the par ameter of the complex movement structure and that of the system movement structu re. By the formula, the precision value of the offset can be figured out. The r ule is adapted to different types of energy-saving stone-sawing machines. The complex movement structure of horizontal movement and swing is designed to f ulfill the cutting movement. It can make the saw frame move up with the hanging pod deviating from the vertical direction. At the same time, the saw frame have a down-movement. Then the sum of the two movements is near to zero, and the saw blade and the stone can keep in touch during the whole horizontal cutting. The result is that the actual cutting efficiency is 100%. Also, when the hanging pod moves to the limited position, the saw frame can keep the original inertia, and continue to swing up. It makes the back-cutting have high energy-storing. The optimal design of the eccentricity balance wheel is done. The mathematics fo rmula for expressing the movement system structure is deduced. The calculation m ethod and formula is set up which is used to get the value of important componen ts such as offset. The choice method and formula of elasticity distortion coeffi cient is set up when the saw frame moves smoothly. It is concluded that the offs et is the key dimension to actualize the optimal cutting movement trajectory. The resolving of the technical problems discussed above offers a theoretic and technical basis for optimal design of energy-saving stone-sawing machines.
文摘By means of Solid Works, three-dimensional model of automated assembly system was established, and kinematic simulation based on Solid Works Motion of assembly process for relay was performed. The simulation results proved the feasibility of mechanical design. Eventually, the productivity was estimated based on simulation analysis. The mechanical design provided a solution with high reference value to practical design of automated assembly system for relay.
基金The Education and Teaching Research Project of National University of Defense Technology(Project Number:U2020103)。
文摘In view of the shortcomings of traditional teaching in the Mechanical Design Fundamentals course,the teaching resources are integrated,the teaching content,teaching methods,and assessment methods are reformed,scientific research results are introduced into course teaching,and the task-driven teaching practice is applied.These measures have improved classroom activity,stimulated independent learning,and laid the foundation for the cultivation of students’engineering literacy and innovative ability.
基金funding from Ministry of Science and Technology,Executive Yuan,R.O.C.,under Grant Agreement No.MOST 105–2410-H-002-062-MY3.
文摘This study investigates the design of the royalty rate in a first-price auction across three types of investments:incremental and lumpy with or without an exogenously given intensity.A bidder’s investment cost comprises private information.This,together with the stochastic evolution of the price of the output generated from the auctioned project,precludes the seller from setting the exact dates of investment with the winner.However,the seller can set the royalty rate to equate the winner’s royalty payment with the winner’s information rent so that the winner acts as if to maximize the seller’s revenue.We derive two main conclusions.First,compared with the case in which investment is lumpy with an exogenously given intensity,the seller can set a lower royalty rate on incremental investment because she can collect additional royalty payments from the winner,who has the option to later expand capacity.Second,the impact of output price uncertainty on the optimal royalty rate for the three types of investments exhibits two different patterns.When investment is either incremental or lumpy with an exogenously given intensity,greater output price uncertainty reduces the royalty rate.When investment is lumpy with variable intensity,greater output uncertainty raises the royalty rate.Our results imply that auctioneers may charge differential royalty rates for different types of investments.
基金funded by the National Natural Science Foundation of China(92248303).
文摘When a curling rock slides on an ice sheet with an initial rotation,a lateral movement occurs,which is known as the curling phenomenon.The force of friction between the curling rock and the ice sheet changes continually with changes in the environment;thus,the sport of curling requires great skill and experience.The throwing of the curling rock is a great challenge in robot design and control,and existing curling robots usually adopt a combination scheme of a wheel chassis and gripper that differs significantly from human throwing movements.A hexapod curling robot that imitates human kicking,sliding,pushing,and curling rock rotating was designed and manufactured by our group,and completed a perfect show during the Beijing 2022 Winter Olympics Games.Smooth switching between the walking and throwing tasks is realized by the robot’s morphology transformation based on leg configuration switching.The robot’s controlling parameters,which include the kicking velocity v_(k),pushing velocity v_(p),orientation angle θc,and rotation velocityω,are determined by aiming and sliding models according to the estimated equivalent friction coefficientμ_(equ)and ratio e of the front and back frictions.The stable errors between the target and actual stopping points converge to 0.2 and 1.105 m in the simulations and experiments,respectively,and the error shown in the experiments is close to that of a well-trained wheelchair curling athlete.This robot holds promise for helping ice-makers rectify ice sheet friction or assisting in athlete training.
基金Tianjin Natural Science Foundation (23JCYBJC00660)Tianjin Enterprise Science and Technology Commissioner Project (23YDTPJC00490)+4 种基金National Natural Science Foundation of China (52203066, 51973157, 61904123)China Postdoctoral Science Foundation Grant (2023M742135)National innovation and entrepreneurship training program for college students (202310058007)Tianjin Municipal college students’ innovation and entrepreneurship training program (202310058088)State Key Laboratory of Membrane and Membrane Separation, Tiangong University。
文摘As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.