期刊文献+
共找到509,892篇文章
< 1 2 250 >
每页显示 20 50 100
Practical Analysis of Mechanical Automation Technology in Automobile Manufacturing
1
作者 Miao Zhang 《Journal of Electronic Research and Application》 2023年第5期24-29,共6页
In today’s rapidly developing modern society,automobiles,as an important part of transportation and industrial fields,play a pivotal role.With the improvement of people’s living standards and the increase in traffic... In today’s rapidly developing modern society,automobiles,as an important part of transportation and industrial fields,play a pivotal role.With the improvement of people’s living standards and the increase in traffic demand,the automobile manufacturing industry has been continuously developing and growing globally.However,to cope with increasingly fierce market competition and ever-changing consumer demands,the automobile manufacturing industry is also facing the challenges of improving production efficiency,reducing costs,and improving product quality.In this context,automation technology has gradually become a major trend in the automobile manufacturing industry.As an important support of modern industry,automation technology has shown great application potential in many fields.From industrial production to daily life,automation technology can be seen everywhere.In the field of manufacturing,especially in automobile manufacturing,the application of automation technology is getting more and more attention.Automated production lines,intelligent robots,and automated warehousing systems have all changed the face of automobile manufacturing to varying degrees,bringing companies higher efficiency,more stable quality,and greater competitive advantages.The application trend of this automation technology in various fields not only meets the needs of modern industry for efficient,precise,and sustainable development but also provides new ideas and paths for the future development of the automobile manufacturing industry. 展开更多
关键词 mechanical automation technology Automobile manufacturing Practical analysis Production efficiency
下载PDF
Research on the Mechanical Automation Technology based on Evolutionary Algorithms and Artifi cial Intelligence Theory
2
作者 Mindi Duan 《International Journal of Technology Management》 2016年第7期51-53,共3页
下载PDF
Research Methodology and Analysis of Innovative Pedagogical Models in Mechanical Engineering Courses for International Students at the School of Mechanical Engineering and Automation, Beihang University
3
作者 Zhao Rui 《Contemporary Social Sciences》 2023年第5期141-155,共15页
Taking the engineering courses“Introduction to Mechanical Engineering”and“Machining Process”taught by the author at Beihang University’s International School as examples,this article systematically analyzed the c... Taking the engineering courses“Introduction to Mechanical Engineering”and“Machining Process”taught by the author at Beihang University’s International School as examples,this article systematically analyzed the current status and background of international student education,focused on research strategies for interdisciplinary education and industry-education integration innovation models from the perspectives of technical demands,student needs,and societal requirements.This article aims to cultivate highly qualified international students who come to China for their studies,help them better adapt to China’s social employment environment,and enhance their capabilities for career development in China.This article proposes a comprehensive set of innovative teaching models for mechanical engineering courses for international students at Beihang University,which encompasses eight key aspects,including talent development programs,curriculum outline reforms,optimization of classroom teaching content,respect for individual student characteristics,the establishment of practical teaching components,the use of open-ended assignments to stimulate enthusiasm for learning,the cultivation of international students’interest in China,their belief in developing friendships with China,and their goals of staying in China,and the incorporation of external experts to facilitate industry-education integration. 展开更多
关键词 international students mechanical courses teaching models strategies and practices
下载PDF
Mechanical Behavior and Microstructure Evolution during Tensile Deformation of Twinning Induced Plasticity Steel Processed by Warm Forgings
4
作者 王文 ZHAO Modi +2 位作者 WANG Xingfu 汪聃 韩福生 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期417-424,共8页
The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improve... The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improves comprehensive mechanical properties compared to the TWIP steel processed via cold rolling,with a high tensile strength(R_(m))of 793 MPa,a yield strength(R_(P))of 682 MPa,an extremely large R_(P)/R_(m)ratio as high as 0.86 as well as an excellent elongation rate of 46.8%.The microstructure observation demonstrates that steel processed by warm forging consists of large and elongated grains together with fine,equiaxed grains.Complicated micro-defect configurations were also observed within the steel,including dense dislocation networks and a few coarse deformation twins.As the plastic deformation proceeds,the densities of dislocations and deformation twins significantly increase.Moreover,a great number of slip lines could be observed in the elongated grains.These findings reveal that a much more dramatic interaction between microstructural defect and dislocations glide takes place in the forging sample,wherein the fine and equiaxed grains propagated dislocations more rapidly,together with initial defect configurations,are responsible for enhanced strength properties.Meanwhile,larger,elongated grains with more prevalently activated deformation twins result in high plasticity. 展开更多
关键词 TWIP steel TWINNING mechanical property deformation mechanism MICROSTRUCTURE
原文传递
Intermittent disturbance mechanical behavior and fractional deterioration mechanical model of rock under complex true triaxial stress paths
5
作者 Zhi Zheng Hongyu Xu +3 位作者 Kai Zhang Guangliang Feng Qiang Zhang Yufei Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期117-136,共20页
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona... Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads. 展开更多
关键词 True triaxial static and disturbance test mechanical properties Failure mechanism and precursor Intermittent disturbance effect Fractional mechanical model
下载PDF
Mechanical behaviours of bedded sandstone under hydromechanical coupling
6
作者 Junwen Zhang Zhixiang Song +7 位作者 Lichao Zhang Shaokang Wu Shanyong Wang Yang Zhang Xukai Dong Jinxin Wang Yanbo Han Baohua Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1245-1261,共17页
The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of be... The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of bedded sandstones under identical osmotic pressure and various confining pressures were conducted.Then,the evolution curves of stress-strain,permeability and damage,macro-and mesoscopic failure characteristics were obtained.Subsequently,the mechanical behaviour was characterized,and finally the failure mechanism was revealed.The results showed that:(1)The failure of the sandstone with the bedding angle of 45°or 60°was the structure-dominant type,while that with the bedding angle of 0°,30°or 90°was the force-dominant type.(2)When the bedding angle was in the range of(0°,30°)or(45°,90°),the confining pressure played a dominant role in influencing the peak strength.However,withinβ∈(30°,45°),the bedding effect played a dominant role in the peak strength.(3)With the increase in bedding angle,the cohesion increased first,then decreased and finally increased,while the internal friction angle was the opposite.(4)When the bedding angle was 0°or 30°,the“water wedging”effect and the“bedding buckling”effect would lead to the forking or converging shear failure.When the bedding angle was 45°or 60°,the sliding friction effect would lead to the shear slipping failure.When the bedding angle was 90°,the combination of the“bedding buckling”effect and shear effect would lead to the mixed tension-shear failure.The above conclusions obtained are helpful for the prevention of water inrush disasters in water-rich roadways with different dips in coal mines. 展开更多
关键词 Hydromechanical coupling Bedded sandstones mechanical behaviour Bedding effect Failure mechanism
下载PDF
Efficient and Secure IoT Based Smart Home Automation Using Multi-Model Learning and Blockchain Technology
7
作者 Nazik Alturki Raed Alharthi +5 位作者 Muhammad Umer Oumaima Saidani Amal Alshardan Reemah M.Alhebshi Shtwai Alsubai Ali Kashif Bashir 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3387-3415,共29页
The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the d... The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device itself.Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features.This paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in homes.We have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT devices.Our system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing devices.We have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache server.The feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time settings.It is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation systems.Additionally,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber threats.The trial results support the proposed system and demonstrate its potential for use in everyday life. 展开更多
关键词 Blockchain Internet of Things(IoT) smart home automation CYBERSECURITY
下载PDF
Mechanical Complications after Myocardial Infarction: A Comprehensive Review
8
作者 Alexis D. Aparicio-Ortiz María Natalia Alonso-Jimenez +4 位作者 Adrian Espejel-Guzman Aldo Cabello-Ganem Javier Serrano-Roman Santiago Luna-Alcala Nilda Espinola-Zavaleta 《World Journal of Cardiovascular Diseases》 CAS 2024年第1期43-60,共18页
Mechanical complications of myocardial infarction are potentially fatal events that can occur after an acute myocardial infarction. While the introduction of primary percutaneous reperfusion and fibrinolysis has reduc... Mechanical complications of myocardial infarction are potentially fatal events that can occur after an acute myocardial infarction. While the introduction of primary percutaneous reperfusion and fibrinolysis has reduced the incidence of these complications to less than 1%. These complications pose significant hemodynamic consequences and necessitate prompt diagnosis. Echocardiography, cardiac magnetic resonance imaging, and computed tomography are valuable tools for establishing an accurate and expedited diagnosis. Consequently, it is imperative to conduct further scientific research to enhance hemodynamic stabilization techniques such as intra-aortic balloon counterpulsation and extracorporeal membrane oxygenation, in addition to exploring new surgical procedures that can reduce mortality resulting from mechanical complications. This article aims to provide a comprehensive review of mechanical complications following myocardial infarction and their correlation with multi-imaging, facilitating a better understanding of these complications. 展开更多
关键词 INFARCTION mechanical Complications ECHOCARDIOGRAPHY Magnetic Resonance
下载PDF
Synergistic enhancement on mechanical properties and corrosion resistance of biodegradable Mg-Zn-Y alloy via V-microalloying
9
作者 Jiaxin Zhang Xin Ding +3 位作者 Ruirun Chen Wenchao Cao Jinshan Zhang Rui Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期530-545,共16页
For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with ... For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with long-period stacking ordered(LPSO)structure,and the effects of V on its microstructure,mechanical properties and corrosion resistance are investigated systematically.The results indicate that the grains are effectively refined by V addition,and the primaryα-Mg in Mg-Zn-Y-V0.1 alloy is most significantly refined,with grain size being decreased by 62%.The amount of 18R LPSO structure is increased owing to the V addition.The growth mode of the second phase(W-phase and 18R LPSO structure)is transformed to divorced growth pattern,which ascribes to the thermodynamic drive force of V to promote the nucleation of LPSO phase.Thus,18R LPSO structure presents a continuous distribution.Due to grains refinement and modification of second phase,the tensile strength and strain of alloys are both enhanced effectively.Especially,the ultimate tensile strength and the elongation of V0.1 alloy are 254 MPa and 15.26%,which are 41%and 61%higher than those of V-free alloy,respectively.Owing to the continuously distributed 18R LPSO structure with refined grains and stable product film,the weight loss and hydrogen evolution corrosion rates of V0.1 alloy are 7.1 and 6.2 mmy^(-1),respectively,which are 42.6%and 45.4%lower than those of V-free alloy. 展开更多
关键词 Corrosion mechanical property V-microalloying LPSO SKPFM
下载PDF
Deep learning automation of radiographic patterns for hallux valgus diagnosis
10
作者 Angela Hussain Cadence Lee +1 位作者 Eric Hu Farid Amirouche 《World Journal of Orthopedics》 2024年第2期105-109,共5页
Artificial intelligence(AI)and deep learning are becoming increasingly powerful tools in diagnostic and radiographic medicine.Deep learning has already been utilized for automated detection of pneumonia from chest rad... Artificial intelligence(AI)and deep learning are becoming increasingly powerful tools in diagnostic and radiographic medicine.Deep learning has already been utilized for automated detection of pneumonia from chest radiographs,diabetic retinopathy,breast cancer,skin carcinoma classification,and metastatic lymphadenopathy detection,with diagnostic reliability akin to medical experts.In the World Journal of Orthopedics article,the authors apply an automated and AIassisted technique to determine the hallux valgus angle(HVA)for assessing HV foot deformity.With the U-net neural network,the authors constructed an algorithm for pattern recognition of HV foot deformity from anteroposterior highresolution radiographs.The performance of the deep learning algorithm was compared to expert clinician manual performance and assessed alongside clinician-clinician variability.The authors found that the AI tool was sufficient in assessing HVA and proposed the system as an instrument to augment clinical efficiency.Though further sophistication is needed to establish automated algorithms for more complicated foot pathologies,this work adds to the growing evidence supporting AI as a powerful diagnostic tool. 展开更多
关键词 Artificial intelligence Hallux valgus Deep learning Automated radiography
下载PDF
Effect of Size Change on Mechanical Properties of Monolayer Arsenene
11
作者 郭娟 刘贵立 孙震宇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期206-212,共7页
The Young's modulus, shear modulus and Poisson's ratio of monolayer arsenene with different sizes were calculated by finite element method, so as to explore the influence of dimension and orientation on the me... The Young's modulus, shear modulus and Poisson's ratio of monolayer arsenene with different sizes were calculated by finite element method, so as to explore the influence of dimension and orientation on the mechanical properties of monolayer arsenene. The calculation results show that the small size has a significant effect on the mechanical properties of the monolayer arsenene. The smaller the size, the larger the Young's modulus and Poisson's ratio of the monolayer arsenene. The size change has a great influence on the Young's modulus of the arsenene handrail direction, and the Young's modulus of the zigzag direction is not sensitive to the size change. Similarly, the size change has a significant effect on the shear modulus of arsenene in the handrail direction, while the shear modulus in the zigzag direction has no significant effect on its size change. For the Poisson's ratio, the situation is just the opposite, and the effect of the size change on the Poisson's ratio of the arsenene zigzag direction is greater than that of the handrail direction. 展开更多
关键词 finite element method arsenene size change mechanical properties
原文传递
Improvement of Microstructure and Mechanical Properties of Rapid Cooling Friction Stir-welded A1050 Pure Aluminum
12
作者 许楠 LIU Lutao +2 位作者 SONG Qining ZHAO Jianhua BAO Yefeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期134-141,共8页
Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were inves... Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were investigated by electron backscatter diffraction characterization, Vickers hardness measurements, and tensile testing. The results showed that liquid CO_(2) coolant significantly reduced the peak temperature and increased the cooling rate, so the rapidly cooled FSW joint exhibited fine grains with a large number of dislocations. The grain refinement mechanism of the FSW A1050 pure aluminum joint was primarily attributed to the combined effects of continuous dynamic recrystallization, grain subdivision, and geometric dynamic recrystallization. Compared with conventional FSW, the yield strength, ultimate tensile strength, and fracture elongation of rapidly cooled FSW joint were significantly enhanced, and the welding efficiency was increased from 80% to 93%. The enhanced mechanical properties and improved synergy of strength and ductility were obtained due to the increased dislocation density and remarkable grain refinement. The wear of the tool can produce several WC particles retained in the joint, and the contribution of second phase strengthening to the enhanced strength should not be ignored. 展开更多
关键词 aluminum alloy friction stir welding RECRYSTALLIZATION microstructure mechanical properties
原文传递
Improving the Mechanical and Physical Properties of Hybrid (Polyether Ether Keton) Composites
13
作者 Reem Nsaif Funda Bayindir 《Open Journal of Stomatology》 2024年第3期173-189,共17页
Statement of Problem: Polyether ether ketone material is considered as an important thermoplastic material due to its properties. To obtain a high value stress and tougher hybrid PEEK during different dental applicati... Statement of Problem: Polyether ether ketone material is considered as an important thermoplastic material due to its properties. To obtain a high value stress and tougher hybrid PEEK during different dental applications. Purpose: In this study, it was aimed to improve some mechanical and physical properties of dental (polyether ether ketone) PEEK. Different mechanical properties will be measured at different time intervals after incubation in the Ringer solution. Materials and Methods: A total of 80 samples were produced (n) = 20 used for each test. 2 groups of different PEEK materials were used;extrusion PEEK and compression PEEK (PPE, PPC). All PEEK specimens will be tested after dry storage and then retested after incubation in Ringer’s solution for 1 day, 1 week and 3 weeks at 37®C. Four different mechanical tests were performed for each PEEK sample;Compression, Bending, tensile, and hardness tests will be applied. ANOVA and post-hoc tests were used for statistical analysis. Results: The results of mechanical strength tests including compression, tensile, bending and hardness tests on PEEK (PPE, PPC) showed higher strength values. Incubation with Ringer’s solution at different time intervals affected only the one-week and three-week incubation time values for the entire PEEK sample type. Pure PEEK compression groups (PPC) show higher mechanical stress degrees than other pure PEEK extrusion groups (PPE) while the Stress and strain values showed no significant difference between the two pure PEEK groups (P-value > 0.05). Mechanical tests showed different results between different PEEK samples at different time storage intervals. Conclusion: The measuring parameters (pressure stress, bending stress, tensile stress and hardness value) varied across the study groups (PPE, PPC) and across the four storage conditions/times (dry condition and one day, one week and three weeks in Ringer solution) within the same group. 展开更多
关键词 PEEK mechanical Properties PEEK Storage
下载PDF
Microstructure and mechanical properties stability of pre-hardening treatment in Al-Cu alloys for pre-hardening forming process
14
作者 Liping Tang Pengfei Wei +1 位作者 Zhili Hu Qiu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期539-551,共13页
The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stabili... The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stability of the pre-hardened sheets was in-vestigated by differential scanning calorimetry(DSC),transmission electron microscopy(TEM),and small angle X-ray scattering(SAXS),while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests.The results in-dicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging(NA).The deviations of ultimate tensile strength(UTS),yield strength(YS),and sheet formability(Erichsen value)are all less than 2%.Also,after different NA time(from 48 h to 1 month)is applied to alloys before pre-hardening treatment,the pre-hardened alloys possess stable microstructure and mechanical properties as well.Interestingly,with the extension of NA time before pre-hardening treatment from 48 h to 1 month,the contribution of NA to the pre-hardening treatment is limited.Only a yield strength increment of 20 MPa is achieved,with no loss in elongation.The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston(GP)zones at the early stage of pre-hardening treatment,and the formation ofθ''phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves. 展开更多
关键词 Al-Cu alloy pre-hardened alloy natural aging mechanical properties MICROSTRUCTURE
下载PDF
Mechanical Behavior of Bamboo,and Its Biomimetic Composites and Structural Members:A Systematic Review
15
作者 Shanyu Han Yuyuan He +5 位作者 Hanzhou Ye Xueyong Ren Fuming Chen Kewei Liu Sheldon Q.Shi Ge Wang 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期56-73,共18页
Bamboo is a typical biological material widely growing in nature with excellent physical and mechanical properties.It is lightweight with high strength and toughness.The naturally optimized bamboo structure,which has ... Bamboo is a typical biological material widely growing in nature with excellent physical and mechanical properties.It is lightweight with high strength and toughness.The naturally optimized bamboo structure,which has inspired global material scientists and engineers for decades,is significantly important for the bionic design of novel structural materials with ultra-light,ultra-strong,or ultra-tough and comprehensive properties.Typical literature on innovative composite materials and structural members inspired by bamboo are reviewed in this paper,and the research progress and prospects in this field are expounded in three parts.First,the structural characteristics of the bamboo wall layer along the thickness and height directions are described in terms of chemical composition,gradient structure,pore structure,and hollow structure with variable cross-section.Second,this paper summarizes the research progress on new composite materials and structural components by applying bamboo’s structural features from the perspective of sustainability,designability,and customization.Finally,given the limitations of current research,the biomimetic scientific research on bamboo’s structural characteristics is prospected from the interpretation of bamboo structure,new bamboo-like materials,and structural design optimization perspectives,providing a reference for future research on biomimetic aspects of biomass. 展开更多
关键词 BAMBOO Structural characteristics-Bamboo-like material Physical and mechanical properties
下载PDF
Spark Plasma Sintering of Mg-based Alloys:Microstructure,Mechanical Properties,Corrosion Behavior,and Tribological Performance
16
作者 Alessandro M.Ralls Mohammadreza Daroonparvar Pradeep L.Menezes 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期405-442,共38页
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co... Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing. 展开更多
关键词 Spark plasma sintering Magnesium alloys NANOCRYSTALLINE TRIBOLOGY mechanical properties Corrosion
下载PDF
Temperature dependence of mechanical properties and damage evolution of hot dry rocks under rapid cooling
17
作者 Longjun Dong Yihan Zhang +2 位作者 Lichang Wang Lu Wang Shen Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期645-660,共16页
Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoust... Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoustic emission(AE)characteristics and mechanical parameters of granodiorite and granite after heating and water cooling by uniaxial compression and variable-angle shear tests under different temperature gradients.We identify their changes in mesostructure and mineral composition with electron probe microanalysis and scanning electron microscopy.Results show that these two hot dry rocks have similar diagenetic minerals and microstructure,but show significantly different mechanical and acoustic characteristics,and even opposing evolution trends in a certain temperature range.At the temperatures ranging from 100℃to 500℃,the compressive and shear mechanical properties of granodiorite switch repeatedly between weakening and strengthening,and those of granite show a continuous weakening trend.At 600℃,both rocks exhibit a deterioration of mechanical properties.The damage mode of granite is characterized by initiating at low stress,exponential evolutionary activity,and intensified energy release.In contrast,granodiorite exhibits the characteristics of initiating at high stress,volatile evolutionary activity,and intermittent energy release,due to its more stable microstructure and fewer thermal defects compared to granite.As the temperature increases,the initiation and propagation of secondary cracks in granodiorite are suppressed to a certain extent,and the seismicity and brittleness are enhanced.The subtle differences in grain size,microscopic heterogeneity,and mineral composition of the two hot dry rocks determine the different acoustic-mechanical characteristics under heating and cooling,and the evolution trends with temperature.These findings are of great significance for the scientific and efficient construction of rock mass engineering by rationally utilizing different rock strata properties. 展开更多
关键词 Hot dry rock Acoustic emission mechanical properties High temperature DAMAGE
下载PDF
Recent research in mechanical properties of geopolymer-based ultrahigh-performance concrete:A review
18
作者 G.Murali 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期67-88,共22页
Due to the growing need for sustainable and ultra-high-strength construction materials,scientists have created an innovative ultra-high-performance concrete called Geopolymer based ultra-highperformance concrete(GUHPC... Due to the growing need for sustainable and ultra-high-strength construction materials,scientists have created an innovative ultra-high-performance concrete called Geopolymer based ultra-highperformance concrete(GUHPC).Besides,in the last few decades,there have been a lot of explosions and ballistic attacks around the world,which have killed many civilians and fighters in border areas.In this context,this article reviews the fresh state and mechanical properties of GUHPC.Firstly,the ingredients of GUHPC and fresh properties such as setting time and flowability are briefly covered.Secondly,the review of compressive strength,flexure strength,tensile strength and modulus of elasticity of fibrous GUHPC.Thirdly,the blast and projectile impact resistance performance was reviewed.Finally,the microstructural characteristics were reviewed using the scanning electron microscope and X-ray Powder Diffraction.The review outcome reveals that the mechanical properties were increased when 30%silica fume was added to a higher dose of steel fibre to improve the microstructure of GUHPC.It is hypothesized that the brittleness of GUHPC was mitigated by adding 1.5%steel fibre reinforcement,which played a role in the decrease of contact explosion cratering and spalling.Removing the need for cement in GUHPC was a key factor in the review,indicating a promising potential for lowering carbon emissions.However,GUHPC research is still in its early stages,so more study is required before its full potential can be utilized. 展开更多
关键词 mechanical properties BLAST Projectile impact FIBRE GEOPOLYMER Silica fume Alkaline activators
下载PDF
To improve robustness of mechanical properties of semi-solid cast A356 alloy using taguchi design method
19
作者 Yi-wu Xu Hong-yi Zhan +4 位作者 Wei Tong Jin-ping Li Le-peng Zhang De-jiang Li Xiao-qin Zeng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期175-184,共10页
Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated... Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated the impact of parameters in slurry preparation and heat treatment on the yield strength and ductility of T6 heat-treated A356 Al-Si alloy using rapid slurry forming(RSF)semi-solid casting.The focus was primarily on the robustness of mechanical properties based on Taguchi design method.By analyzing signal-to-noise ratio and minimum value calculated from-3S,the optimum slurry preparation parameters and heat treatment parameters were determined to be no quench,enthalpy exchange material(EEM)temperature of 140℃,EEM-to-melt ratio of 6mass%,stirring time of 18 s,solution heat treated at 520℃ for 2 h,and ageing heat treated at 190℃ for 6 h.In a small batch validation,the-3S yield strength and-3S elongation reach 256.1 MPa and 5.03% respectively,showing a satisfactory robustness.The hardness and microstructure of heat-treated samples with the best and worst properties were characterized to gain insight into the underlying mechanisms affecting the mean value and variations of mechanical properties. 展开更多
关键词 semi-solid casting taguchi design method signal-to-noise ratio mechanical property MICROSTRUCTURE
下载PDF
A creep model for ultra-deep salt rock considering thermal-mechanical damage under triaxial stress conditions
20
作者 Chao Liang Jianfeng Liu +3 位作者 Jianxiong Yang Huining Xu Zhaowei Chen Lina Ran 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期588-596,共9页
To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin... To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems. 展开更多
关键词 Creep experiments Creep model Thermal and mechanical damage Fractional derivative
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部