期刊文献+
共找到674,335篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of HEA/Al composite interlayer on microstructure and mechanical property of Ti/Mg bimetal composite by solid-liquid compound casting 被引量:1
1
作者 Jin Cheng Jian-hua Zhao +3 位作者 Chun Wang Jing-jing Shangguan Cheng Gu Ya-jun Wang 《China Foundry》 SCIE CAS CSCD 2023年第1期1-11,共11页
In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HE... In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HEA layer was prepared by magnetron sputtering onto the Al layer.The influence of the HEA layer thickness and pouring temperature on interface evolution was investigated based on SEM observation and thermodynamic analysis.Results indicate that the sluggish diffusion effect of HEA can effectively inhibit the interfacial diffusion between Al and Mg,which is conducive to the formation of solid solution,especially when the thickness of HEA is 800 nm.With the increase of casting temperature from 720 ℃ to 730 ℃,740℃,and 750 ℃,α-Al(Mg),α-Al(Mg)+Al3Mg2,Al3Mg2+Al12Mg17,and Al12Mg17+δ-Mg are formed at the interface of Ti/Mg bimetal,respectively.When the thickness of the HEA layer is 800 nm and the pouring temperature is 720 ℃,the bonding strength of the Ti/Mg bimetal can reach the maximum of 93.6 MPa. 展开更多
关键词 Ti/Mg bimetal composite microstructure solid-liquid compound casting HEA/Al composite interlayer mechanical property
下载PDF
Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review
2
作者 Na Xiao Xu Guan +7 位作者 Dong Wang Haile Yan Minghui Cai Nan Jia Yudong Zhang Claude Esling Xiang Zhao Liang Zuo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1667-1679,共13页
Face-centered cubic (f.c.c.) high entropy alloys (HEAs) are attracting more and more attention owing to their excellent strength and ductility synergy, irradiation resistance, etc. However, the yield strength of f.c.c... Face-centered cubic (f.c.c.) high entropy alloys (HEAs) are attracting more and more attention owing to their excellent strength and ductility synergy, irradiation resistance, etc. However, the yield strength of f.c.c. HEAs is generally low, significantly limiting their practical applications. Recently, the alloying of W has been evidenced to be able to remarkably improve the mechanical properties of f.c.c. HEAs and is becoming a hot topic in the community of HEAs. To date, when W is introduced, multiple strengthening mechanisms, including solid-solution strengthening, precipitation strengthening (μphase,σphase, and b.c.c. phase), and grain-refinement strengthening, have been discovered to be activated or enhanced. Apart from mechanical properties, the addition of W improves corrosion resistance as W helps to form a dense WO_(3) film on the alloy surface. Until now, despite the extensive studies in the literature, there is no available review paper focusing on the W doping of the f.c.c. HEAs. In that context, the effects of W doping on f.c.c. HEAs were reviewed in this work from three aspects, i.e., microstructure,mechanical property, and corrosion resistance. We expect this work can advance the application of the W alloying strategy in the f.c.c. HEAs. 展开更多
关键词 high-entropy alloys lattice distortion W doping mechanical property precipitation
下载PDF
Effect of Water Absorption on the Mechanical Property and Failure Mechanism of Hollow Glass Microspheres Composite Epoxy Resin Solid Buoyancy Materials
3
作者 DING Yue ZHAI Gang-jun +2 位作者 MA Zhe WEI Zi-hao LI Xin 《China Ocean Engineering》 SCIE EI CSCD 2023年第5期876-884,共9页
To study the water absorption of hollow glass microspheres(HGMs)composite epoxy resin solid buoyancy materials in the marine environment and its effect on the mechanical properties,the water absorption was measured by... To study the water absorption of hollow glass microspheres(HGMs)composite epoxy resin solid buoyancy materials in the marine environment and its effect on the mechanical properties,the water absorption was measured by immersing the material in distilled water for 36 days at ambient temperature and fitted to Fick’s second law.The strength of materials before and after water absorption were tested by uniaxial experiments,and the effects of the filling ratio and water absorption on the mechanical properties of the materials were analyzed and explained.Finally,the failure modes and mechanism of the hollow glass microspheres composite material were explicated from the microscopic level by scanning electron microscope(SEM).This research will help solve the problems of solid buoyancy materials in ocean engineering applications. 展开更多
关键词 solid buoyancy material water absorption mechanical property failure mechanism scanning electron microscope
下载PDF
Mechanical Property Evaluation of Glass-carbon-durian Skin Fiber Reinforced Polylactic Acid Composites
4
作者 Boonsin Nadondu Prayoon Surin Jakawat Deeying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期244-247,共4页
The main objective of this work was to study and develop composite materials by experiments with mixtures of synthetic(glass fiber, carbon fiber) and natural fiber(durian skin fiber) reinforcements on a polylactic aci... The main objective of this work was to study and develop composite materials by experiments with mixtures of synthetic(glass fiber, carbon fiber) and natural fiber(durian skin fiber) reinforcements on a polylactic acid(PLA) matrix composite, because of its excellent mechanical properties. Durian skin fiber(DSF) is a natural waste throughout Thailand, and an alternative to recycling is to realize its potential as a new reinforcement through mixing and the injection molding processes. The flexural strength(σ_(F)) and flexural modulus(E_(F)) of the composites from specimens showed a maximum value by content of durian skin fiber at 10 wt%, for good performance relative to particle dispersion between the matrix and the fiber, and showed a minimum value by content of durian skin fiber at 20 wt%, because the reinforcement material affects the mechanical properties in the experiments. 展开更多
关键词 glass fiber carbon fiber durian skin fiber polylactic acid mechanical properties
原文传递
Mechanical property and permeability of raw coal containing methane under unloading confining pressure 被引量:9
5
作者 Yin Guangzhi Li Wenpu +4 位作者 Jiang Changbao Li Minghui Li Xing Liu Hairu Zhang Qiangui 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期789-793,共5页
Based on domestic-developed triaxial servo-controlled seepage equipment for thermal-hydrologicalmechanical coupling of coal containing methane,an experimental study was carried out to investigate mechanical property a... Based on domestic-developed triaxial servo-controlled seepage equipment for thermal-hydrologicalmechanical coupling of coal containing methane,an experimental study was carried out to investigate mechanical property and gas permeability of raw coal,under the situation of conventional triaxial compression and unloading confining pressure tests in different gas pressure conditions.Triaxial unloading confining pressure process was reducing confining pressure while increasing axial pressure.The research results show that,compared with the peak intensity of conventional triaxial loading,the ultimate strength of coal samples of triaxial unloading confining pressure was lower,deformation under loading was far less than unloading,dilation caused by unloading was more obvious than loading.The change trend of volumetric strain would embody change of gas permeability of coal,the permeability first reduced along with volumetric strain increase,and then raised with volume strain decrease,furthermore,the change trends of permeability of coal before and after destruction were different in the stage of decreasing volume strain due to the effect of gas pressure.When gas pressure was greater,the effective confining pressure was smaller,and the radial deformation produced by unloading was greater.When the unloading failed confining pressure difference was smaller,coal would be easier to get unstable failure. 展开更多
关键词 Mining engineering Unloading confining pressure Coal containing methane mechanical property PERMEABILITY
下载PDF
Effect of Y content and equal channel angular pressing on the microstructure, texture and mechanical property of extruded Mg-Y alloys 被引量:6
6
作者 W.Yang G.F.Quan +4 位作者 B.Ji Y.F.Wan H.Zhou J.Zheng D.D.Yin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第1期210-224,共15页
The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, elec... The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, electron backscatter diffraction(EBSD) and uniaxial tensile test. The Mg-Y alloys exhibited a weakened basal texture before the ECAP, and the texture was further weakened with the max basal poles dispersed along ~45° between the extrusion direction and the transverse direction after the ECAP. The Mg-5 Y alloys always exhibited a finer grain size comparing to that of Mg-1 Y for the same ECAP process. With a proper ECAP process, both the strength and elongation of Mg-5 Y alloy could be improved simultaneously after the ECAP, i.e., the yield strength(273.9 ± 1.2 MPa), ultimate strength(306.4 ± 3.0 MPa),and elongation(23.9 ± 1.0%) were increased by 10%, 6%, and 72%, respectively, comparing to that before the ECAP. This was considered to be arose from the combined effects of grain refinement, significant improved microstructure homogeneity and solid solution hardening.In addition, it was found that Mg-Y alloy with better comprehensive properties could be obtained by the decreasing-temperature ECAP processes. The yield strength-grain size relationship could be well described by the Hall-Petch relation for all the ECAPed Mg-Y alloys,which was consistent with that the texture changes did not significantly affect the average Schmid factors of basal, prismatic and pyramidal slips for both Mg-Y alloys. 展开更多
关键词 Mg-RE alloy Equal channel angular pressing TEXTURE mechanical property
下载PDF
Effect of trace yttrium on the microstructure,mechanical property and corrosion behavior of homogenized Mg-2Zn-0.1Mn-0.3Ca-xY biological magnesium alloy 被引量:3
7
作者 Mingfan Qi Liangyu Wei +4 位作者 Yuzhao Xu Jin Wang Aisen Liu Bing Hao Jicheng Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第9期1746-1754,共9页
The effects of trace yttrium(Y)element on the microstructure,mechanical properties,and corrosion resistance of Mg-2Zn-0.1Mn-0.3Ca-xY(x=0,0.1,0.2,0.3)biological magnesium alloys are investigated.Results show that grain... The effects of trace yttrium(Y)element on the microstructure,mechanical properties,and corrosion resistance of Mg-2Zn-0.1Mn-0.3Ca-xY(x=0,0.1,0.2,0.3)biological magnesium alloys are investigated.Results show that grain size decreases from 310 to 144µm when Y content increases from 0wt%to 0.3wt%.At the same time,volume fraction of the second phase increases from 0.4%to 6.0%,yield strength of the alloy continues to increase,and ultimate tensile strength and elongation decrease initially and then increase.When the Y content increases to 0.3wt%,Mg_(3)Zn_(6)Y phase begins to precipitate in the alloy;thus,the alloy exhibits the most excellent mechanical property.At this time,its ultimate tensile strength,yield strength,and elongation are 119 MPa,69 MPa,and 9.1%,respectively.In addition,when the Y content is 0.3wt%,the alloy shows the best corrosion resistance in the simulated body fluid(SBF).This investigation has revealed that the improvement of mechanical properties and corrosion resistance is mainly attributed to the grain refinement and the precipitated Mg_(3)Zn_(6)Y phase. 展开更多
关键词 trace yttrium biological magnesium alloy Mg_(3)Zn_(6)Y microstructure mechanical property corrosion behavior
下载PDF
Evolution of Microstructure and Mechanical Property during Long-Term Aging in Udimet 720Li 被引量:6
8
作者 Lanzhang ZHOU and Valentino LUPINC CNR-TeMPE, Via R. Cozzi 53, 20125 Milano, Italy Jianting GUO Institute of Metal Research, CAS, 72 Wenhua Road, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第6期633-637,共5页
Thermal stabilities of microstructure and mechanical property have been investigated on super- alloy U72OLi, which is of great interest of application for jet engine and land-based turbine disc. The results showed tha... Thermal stabilities of microstructure and mechanical property have been investigated on super- alloy U72OLi, which is of great interest of application for jet engine and land-based turbine disc. The results showed that, the primary and secondary γ’?particles maintain good thermal stability at 650 and 7000C with aging time up to 3000 h, while the tertiary γ’?is apparently dependent on aging temperature and time. The tertiary γ’?particles undergo a procedure of coarsening, dissolution and eventually complete disappearance with the increasing of aging time and temper- ature. They exhibit unusual high sensibility upon aging temperature, which is attributed to the lattice misfit between the γ’?precipitates and the matrix in the alloy. The grain boundary phase M23C6 remains stable without forming of sigma phase even with aging time up to 3000 h at 700℃. Microhardness decreases apparently with increasing aging time and aging temperature. Theoretical analysis based on dislocation mechanism indicates that the change of microhardness should be attributed to the evolution of the tertiary γ’?during aging. 展开更多
关键词 Evolution of Microstructure and mechanical property during Long-Term Aging in Udimet 720Li LONG
下载PDF
Effects of Bi on the microstructure and mechanical property of ZK60 alloy 被引量:2
9
作者 Zhenghua Huang Wanghanbo Liu +2 位作者 Wenjun Qi Jing Xu Nan Zhou 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第1期29-35,共7页
Microstructures and phase compositions of as-cast and extruded ZK60-xBi(x=0-1.64)alloys were investigated.Meanwhile,the tensile mechanical property and hardness were tested.With increasing the Bi content,the as-cast m... Microstructures and phase compositions of as-cast and extruded ZK60-xBi(x=0-1.64)alloys were investigated.Meanwhile,the tensile mechanical property and hardness were tested.With increasing the Bi content,the as-cast microstructure is first refined obviously,and then becomes coarse slightly.New small block compound which is rich in Zr,Zn,Bi and poor in Mg increases gradually,and MgZn_(2) phase decreases gradually.The second phase mainly precipitates along the grain boundary.The as-cast tensile mechanical property is first enhanced obviously,where the tensile strengthσb,yield strengthσ0.2 and elongationδcan reach 265 MPa,151 MPa and 13.5%for ZK60-0.23Bi alloy,respectively,then remains the high value for ZK60-(0.37-1.09)Bi alloys,and finally decreases obviously for ZK60-1.64Bi alloy.After hot extrusion,the obvious dynamic recrystallization occurs.Broken block compound distributes along the extrusion direction by zonal shape.The average grain size can reach only 4-6μm.The extruded tensile mechanical property is enhanced significantly,where σ_(b),σ_(0.2) and δ are at the range of 345-360 MPa,285-300 MPa and 15.5-19.5%,respectively.Extruded tensile fracture exhibits a typical character of ductile fracture. 展开更多
关键词 ZK60 magnesium alloy Bi modification EXTRUSION MICROSTRUCTURE mechanical property
下载PDF
Microstructure and Mechanical Property of 2024 Aluminium Alloy Prepared by Rapid Solidification and Mechanical Milling 被引量:2
10
作者 Guoxian LIANG Erde WANG Zhimin LI and Zhichao LI (School of Materials Science and Engineering, Harbin Institute of Technology Harbin, 150001, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第6期398-402,共5页
Rapidly solidified 2024 aluminium alloy powders were mechanically milled, then consolidated to bulk form. The microstructural changes of the powders in mechanical milling (MM) and consolidation process were characteri... Rapidly solidified 2024 aluminium alloy powders were mechanically milled, then consolidated to bulk form. The microstructural changes of the powders in mechanical milling (MM) and consolidation process were characterized by X-ray diffraction analyses and transmission electron microscopy observations. The results showed that mechanical milling reduced the grain size to nanometer, dissolved the Al2Cu intermetallic compound into the aluminium matrix and produced an aluminium supersaturated solid solution. During consolidation process. the grain size increased to submicrometer, and the Al2Cu and Al2(Cu, Mg, Si, Fe, Mn) compounds precipitated owing to heating. Increasing consolidation temperature and time results in obvious grain growth and coarsening of second phase particles. The tensile yield strength of the consolidated alloy with submicrometer size grains increases with decreasing grain size, and it follows the famous HallPetch 展开更多
关键词 FIGURE Microstructure and mechanical property of 2024 Aluminium Alloy Prepared by Rapid Solidification and mechanical Milling MPR SI
下载PDF
The corrosion behavior and mechanical property of the Mg-7Y-x Nd ternary alloys 被引量:2
11
作者 Quantong Jiang Xianzi Lv +2 位作者 Dongzhu Lu Jie Zhang Baorong Hou 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第4期346-355,共10页
The corrosion behavior and mechanical property of Mg-7Y-x Nd(x=0.5,1.0,1.5 wt%)alloys were investigated.The microstructure and precipitations of Mg-7Y-x Nd alloys were studied by scanning electron microscopy,energy-di... The corrosion behavior and mechanical property of Mg-7Y-x Nd(x=0.5,1.0,1.5 wt%)alloys were investigated.The microstructure and precipitations of Mg-7Y-x Nd alloys were studied by scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffraction.The quantities of the Mg_(12)(Y,Nd)phase increased,whereas that of the Mg_(24)(Y,Nd)_(5)phase decreased with increasing Nd-content.The weight loss rate decreased from 17.5020 mg cm^(-2)·d^(-1)(36.7542 mm y^(-1))to 9.3744 mg cm^(-2)·d^(-1)(19.6862 mm y^(-1)).The electrochemical measurement also demonstrated the similar tendency.The loss in mechanical properties after corrosion reaction followed the order Mg-7Y-0.5Nd>Mg-7Y-1.0Nd>Mg-7Y-1.5Nd.The precipitations played dual roles in the corrosion resistance that depended on type and distribution. 展开更多
关键词 Mg-Y-Nd alloy Microstructure CORROSION mechanical property
下载PDF
Influence of Thermal Load on Mechanical Property of Cemented Carbide Material and Heavy Cemented Carbide Inserts Life 被引量:2
12
作者 Yao-Nan Cheng Li Liu +3 位作者 Shou-Hui Sun Jun Qian Ya-Nan Gong Ming-Yang Wu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第6期59-66,共8页
A large amount of cutting heat is produced during the heavy cutting process,and insert life is restricted by the effect of thermal load. The thermal load experiment of cemented carbide SCS,WF and YT15 is carried out,a... A large amount of cutting heat is produced during the heavy cutting process,and insert life is restricted by the effect of thermal load. The thermal load experiment of cemented carbide SCS,WF and YT15 is carried out,and the results show that the bending strength and fracture toughness of cemented carbide material decrease obviously under cyclic thermal load,while in the cooling process,the material mechanical property changes worse suddenly. The high-temperature mechanical property of SCS is the most stable,and that of YT15is the worst. Further,a relation model among cutting temperature,cutting parameters and insert life is established. Finally,the measures to improve heavy cemented carbide inserts life are summarized from the aspects of cutting parameters selection,insert optimization design and TiCN,A12O3,TiN complex insert coating. The research results are expected to provide support and reference for heavy cutting technology and insert technology. 展开更多
关键词 thermal load cemented carbide mechanical property heavy cutting insert life
下载PDF
Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries:A molecular dynamics simulation study 被引量:1
13
作者 肖启鑫 侯兆阳 +1 位作者 李昌 牛媛 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期520-525,共6页
The mechanical property and deformation mechanism of twinned gold nanowire with non-uniform distribution of twinned boundaries(TBs)are studied by the molecular dynamics(MD)method.It is found that the twin boundary spa... The mechanical property and deformation mechanism of twinned gold nanowire with non-uniform distribution of twinned boundaries(TBs)are studied by the molecular dynamics(MD)method.It is found that the twin boundary spacing(TBS)has a great effect on the strength and plasticity of the nanowires with uniform distribution of TBs.And the strength enhances with the decrease of TBS,while its plasticity declines.For the nanowires with non-uniform distribution of TBs,the differences in distribution among different TBSs have little effect on the Young's modulus or strength,and the compromise in strength appears.But the differences have a remarkable effect on the plasticity of twinned gold nanowire.The twinned gold nanowire with higher local symmetry ratio has better plasticity.The initial dislocations always form in the largest TBS and the fracture always appears at or near the twin boundaries adjacent to the smallest TBS.Some simulation results are consistent with the experimental results. 展开更多
关键词 twin nanowire GOLD non-uniform distribution mechanical property molecular dynamics simulation
原文传递
PREDICTION OF MECHANICAL PROPERTY OF WHISKER REINFORCED METAL MATRIX COMPOSITE: PART-I. MODEL AND FORMULATION 被引量:1
14
作者 刘秋云 梁乃刚 刘晓宇 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第3期-,共6页
Based on study of strain distribution in whisker reinforced metal matrix composites, an explicit precise stiffness tensor is derived. In the present theory, the effect of whisker orientation on the macro property of c... Based on study of strain distribution in whisker reinforced metal matrix composites, an explicit precise stiffness tensor is derived. In the present theory, the effect of whisker orientation on the macro property of composites is considered, but the effect of random whisker position and the complicated strain field at whisker ends are averaged. The derived formula is able to predict the stiffness modulus of composites with arbitrary whisker orientation under any loading condition. Compared with the models of micro mechanics, the present theory is competent for modulus prediction of actual engineering composites. The verification and application of the present theory are given in a subsequent paper published in the same 展开更多
关键词 whisker short fiber reinforced composite whisker orientation ANISOTROPY mechanical property prediction
下载PDF
Nanoscale mechanical property variations concerning mineral composition and contact of marine shale
15
作者 Yong Li Jianqi Chen +2 位作者 Derek Elsworth Zhejun Pan Xiaotian Ma 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第4期165-180,共16页
Mechanical properties of shales are key parameters influencing hydrocarbon production – impacting borehole stability, hydraulic fracture extension and microscale variations in in situ stress. We use Ordovician shale(... Mechanical properties of shales are key parameters influencing hydrocarbon production – impacting borehole stability, hydraulic fracture extension and microscale variations in in situ stress. We use Ordovician shale(Sichuan Basin, China) as a type-example to characterize variations in mineral particle properties at microscale including particle morphology, form of contact and spatial distribution via mineral liberation analysis(MLA) and scanning electron microscopy(SEM). Deformation-based constitutive models are then built using finite element methods to define the impact of various architectures of fracture and mineral distributions at nanometer scale on the deformation characteristics at macroscale.Relative compositions of siliceous, calcareous and clay mineral particles are shown to be the key factors influencing brittleness. Shales with similar mineral composition show a spectrum of equivalent medium mechanical properties due to differing particle morphology and mineral heterogeneity. The predominance of small particles and/or point-point contacts are conducive to brittle failure, in general, and especially so when quartz-rich. Fracture morphology, length and extent of filling all influence shale deformability. High aspect-ratio fractures concentrate stress at fracture tips and are conducive to extension, as when part-filled by carbonate minerals. As fracture spacing increases, stress transfer between adjacent fractures weakens, stress concentrations are amplified and fracture extension is favored. The higher the fractal dimension of the fracture and heterogeneity of the host the more pervasive the fractures. Moreover, when fractures extend, their potential for intersection and interconnection contributes to a reduction in strength and the promotion of brittle failure. Thus, these results provide important theoretical insights into the role of heterogeneity on the deformability and strength of shale reservoirs with practical implications for their stimulation and in the recovery of hydrocarbons from them. 展开更多
关键词 Shale oil and gas Shale lithofacies Mineral composition Multiscale mechanical property Nanoscale mechanics Finite-element simulation
下载PDF
Microstructure and Mechanical Property of (TiNbTaZrHf)C Synthesized by In-situ Reaction
16
作者 周庆 张金咏 +1 位作者 FU Zhengyi WANG Dangqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第2期177-183,共7页
The(TiNbTaZrHf)C high entropy carbide(HEC)was successfully synthesized by complete commercial transition metal powders,obtained fine sintered bulks without additives by in-situ reaction element synthesis method.(TiNbT... The(TiNbTaZrHf)C high entropy carbide(HEC)was successfully synthesized by complete commercial transition metal powders,obtained fine sintered bulks without additives by in-situ reaction element synthesis method.(TiNbTaZrHf)C bulk shows a face centered cubic rock salt structure with homogeneous single-phase FCC structure in composition and structure.The optimum sintering temperature is about 1900℃at which the best mechanical properties are obtained.The mechanical properties of(TiNbTaZrHf)C ceramic block are better than those of binary transition metal carbides,and it has obvious high entropy effect.Adding a small amount of Al as sintering additive,the mechanical properties of(TiNbTaZrHf)C ceramics continue to improve,the bending strength of the samples at each temperature is increased by at least 38%,and the highest is 486 MPa.The elastic modulus and hardness of the sample at 1900℃are also slightly increased by 4%and 14%,respectively.The above conclusions illustrate that the properties of high entropy ceramics are greatly improved by in-situ reaction sintering. 展开更多
关键词 high entropy carbide in-situ reaction MICROSTRUCTURE mechanical property sintering additive
原文传递
Calcium looping heat storage performance and mechanical property of CaO-based pellets under fluidization
17
作者 Zhangke Ma Yingjie Li +3 位作者 Boyu Li Zeyan Wang Tao Wang Wentao Lei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第8期170-180,共11页
The CaO-based pellets were fabricated using extrusion-spheronization method for calcium looping thermochemical heat storage under the fluidization.The effects of adhesive,biomass-based pore-forming agent,binder and pa... The CaO-based pellets were fabricated using extrusion-spheronization method for calcium looping thermochemical heat storage under the fluidization.The effects of adhesive,biomass-based pore-forming agent,binder and particle size on the heat storage performance and mechanical property of the CaObased pellets were investigated in a bubbling fluidized bed reactor.The addition of 2%(mass)polyvinylpyrrolidone as an adhesive not only helps granulate,but also improves the heat storage capacity of the pellets.All biomass-templated CaO-based pellets display higher heat storage capacity than biomass-free pellets,indicating that the biomass-based pore-forming agent is beneficial for heat storage under the fluidization.Especially,bagasse-templated pellets show the highest heat storage conversion of 0.61 after 10 cycles.Moreover,Al_(2)O_(3)as a binder for the pellets helps obtain high mechanical strength.The CaO-based pellets doped with 10%(mass)bagasse and 5%(mass)Al_(2)O_(3)reach the highest heat storage density of 1621 kJ·kg^(-1) after 30 cycles and the highest crushing strength of 4.98 N.The microstructure of the bagasse-templated pellets appears more porous than that of biomass-free pellets.The bagassetemplated CaO-based pellets doped with Al_(2)O_(3)seem promising for thermochemical heat storage under the fluidization,owing to the enhanced heat storage capacity,excellent mechanical strength,and simplicity of the synthesis procedure. 展开更多
关键词 Calcium looping heat storage FLUIDIZATION CaO-based pellets mechanical property
下载PDF
Microstructure and Mechanical Property of Nanocrystalline NiZr_2 Intermetallic Compound
18
作者 Xuedong LIU Fuhe YUAN Ke LU and Wenduo WEI (National Lab. for RSA, Institute of Metal Research, Chinese Acedemy of Sciences, Shenyang 110015, China)(To whom correspondence should be addressed)( Present address: National Lab. of Corrosion Science and Prot 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1996年第6期409-412,共4页
关键词 WANG Microstructure and mechanical property of Nanocrystalline NiZr2 Intermetallic Compound
下载PDF
Microstructure and Mechanical Property of in-situ Al-Cu/TiC Composites 被引量:6
19
作者 Zhang, EL Zeng, SY +2 位作者 Yang, B Li, QC Ma, MZ 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第3期255-258,共4页
An approach named direct reaction synthesis (DRS) has been developed to fabricate particulate composites with an extremely fine reinforcement size. ID situ Al matrix composites were fabri-cated by DRS. Extensive analy... An approach named direct reaction synthesis (DRS) has been developed to fabricate particulate composites with an extremely fine reinforcement size. ID situ Al matrix composites were fabri-cated by DRS. Extensive analysis of the composites microstructure using SEM and TEM identify that the reinforcement formed during the DRS process is Ti carbide (TiC) particle, generally less than 1.0 μm. The reacted, semisolid extruded samples exhibit a homogeneous distribution of fine TiC particles in Al-Cu matrix, Mechanical property evaluation of the composites has revealed a very high tensile strength relative to the matrix alloy. Fractographic analysis indicates ductile failure although the ductility and strength are limited by the presence of coarse titanium aluminides (Al3Ti). 展开更多
关键词 TIC CU FIGURE Microstructure and mechanical property of in-situ Al-Cu/TiC Composites Al
全文增补中
Effect of microstructure evolution on mechanical property of extruded Mg-12Gd-2Er-1Zn-0.6Zr alloys 被引量:7
20
作者 Kai Wen Ke Liu +2 位作者 Zhaohui Wang Shubo Li Wenbo Du 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第1期23-28,共6页
The microstructure evolution of as-cast,as-extruded and peak-aged Mg-12Gd-2Er-1Zn-0.6Zr alloys were investigated by Optical Microscope(OM),X-ray Diffraction(XRD),Scanning Electron Microscope(SEM)and Transmission Elect... The microstructure evolution of as-cast,as-extruded and peak-aged Mg-12Gd-2Er-1Zn-0.6Zr alloys were investigated by Optical Microscope(OM),X-ray Diffraction(XRD),Scanning Electron Microscope(SEM)and Transmission Electron Microscope(TEM).The mechanical performance was also tested by tensile test at room temperature in the present study.The results indicated that the lamellar 14H-LPSO structure formed during the solid solution process at 793 K for 24 h,and also existed after hot extrusion process.The dynamic recrystallization(DRX)occurred during hot extrusion.The DRXed fine grain size was∼5μm.Meanwhile,some un-DRXed grains contained LPSO structure had a roughly orientation along the extrusion direction.The tensile test result showed that the as-extruded alloy had a better elongation of 14%due to fine DRXed grain and fiber-like un-DRXed with LPSO structure attributed to the high elongation.Because of the precipitation of theβ′-phase,the ultimate tensile strength(UTS)and yield tensile strength(YTS)increased up to 415 MPa(UTS)and 374 MPa(YTS),respectively. 展开更多
关键词 Mg-Gd-Er-Zn-Zr alloys mechanical properties Dynamic recrystallization LPSO
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部