期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Medical Knowledge Graph:Data Sources,Construction,Reasoning,and Applications 被引量:6
1
作者 Xuehong Wu Junwen Duan +1 位作者 Yi Pan Min Li 《Big Data Mining and Analytics》 EI CSCD 2023年第2期201-217,共17页
Medical knowledge graphs(MKGs)are the basis for intelligent health care,and they have been in use in a variety of intelligent medical applications.Thus,understanding the research and application development of MKGs wi... Medical knowledge graphs(MKGs)are the basis for intelligent health care,and they have been in use in a variety of intelligent medical applications.Thus,understanding the research and application development of MKGs will be crucial for future relevant research in the biomedical field.To this end,we offer an in-depth review of MKG in this work.Our research begins with the examination of four types of medical information sources,knowledge graph creation methodologies,and six major themes for MKG development.Furthermore,three popular models of reasoning from the viewpoint of knowledge reasoning are discussed.A reasoning implementation path(RIP)is proposed as a means of expressing the reasoning procedures for MKG.In addition,we explore intelligent medical applications based on RIP and MKG and classify them into nine major types.Finally,we summarize the current state of MKG research based on more than 130 publications and future challenges and opportunities. 展开更多
关键词 medical knowledge graph knowledge graph construction knowledge reasoning intelligent medical applications intelligent healthcare
原文传递
Fuzzy-Constrained Graph Pattern Matching in Medical Knowledge Graphs
2
作者 Lei Li Xun Du +1 位作者 Zan Zhang Zhenchao Tao 《Data Intelligence》 EI 2022年第3期599-619,共21页
The research on graph pattern matching(GPM) has attracted a lot of attention. However, most of the research has focused on complex networks, and there are few researches on GPM in the medical field. Hence, with GPM th... The research on graph pattern matching(GPM) has attracted a lot of attention. However, most of the research has focused on complex networks, and there are few researches on GPM in the medical field. Hence, with GPM this paper is to make a breast cancer-oriented diagnosis before the surgery. Technically, this paper has firstly made a new definition of GPM, aiming to explore the GPM in the medical field, especially in Medical Knowledge Graphs(MKGs). Then, in the specific matching process, this paper introduces fuzzy calculation, and proposes a multi-threaded bidirectional routing exploration(M-TBRE) algorithm based on depth first search and a two-way routing matching algorithm based on multi-threading. In addition, fuzzy constraints are introduced in the M-TBRE algorithm, which leads to the Fuzzy-M-TBRE algorithm. The experimental results on the two datasets show that compared with existing algorithms, our proposed algorithm is more efficient and effective. 展开更多
关键词 graph pattern matching medical knowledge graphs Fuzzy constraints Breast cancer Diagnostic classification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部