期刊文献+
共找到417篇文章
< 1 2 21 >
每页显示 20 50 100
Long-Term Electrical Load Forecasting in Rwanda Based on Support Vector Machine Enhanced with Q-SVM Optimization Kernel Function
1
作者 Eustache Uwimana Yatong Zhou Minghui Zhang 《Journal of Power and Energy Engineering》 2023年第8期32-54,共23页
In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access ... In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy. 展开更多
关键词 SVM Quadratic SVM long-term Electrical Load forecasting Residual Load demand Series Historical Electric Load
下载PDF
Medium-Term Electric Load Forecasting Using Multivariable Linear and Non-Linear Regression 被引量:2
2
作者 Nazih Abu-Shikhah Fawwaz Elkarmi Osama M. Aloquili 《Smart Grid and Renewable Energy》 2011年第2期126-135,共10页
Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose ... Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose a new methodol-ogy that uses hourly daily loads to predict the next year hourly loads, and hence predict the peak loads expected to be reached in the next coming year. The technique is based on implementing multivariable regression on previous year's hourly loads. Three regression models are investigated in this research: the linear, the polynomial, and the exponential power. The proposed models are applied to real loads of the Jordanian power system. Results obtained using the pro-posed methods showed that their performance is close and they outperform results obtained using the widely used ex-ponential regression technique. Moreover, peak load prediction has about 90% accuracy using the proposed method-ology. The methods are generic and simple and can be implemented to hourly loads of any power system. No extra in-formation other than the hourly loads is required. 展开更多
关键词 medium-term LOAD forecasting Electrical PEAK LOAD MULTIVARIABLE Regression and TIME SERIES
下载PDF
Long-term Energy Demand and CO_2 Problem in the PRC
3
作者 LQ YingzhongInst. for Techno-Economics and Energy System Analysis. P.O. Box 1021, Beijing 102201, China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1991年第1期29-41,共13页
The long-term energy demand in China and the-Chinese share in global CO2 emission are forecasted on the basis of scenarios of population growth and economy development up to 2050 proposed in view of the interaction of... The long-term energy demand in China and the-Chinese share in global CO2 emission are forecasted on the basis of scenarios of population growth and economy development up to 2050 proposed in view of the interaction of energy, economy, environment and social development. The total energy demand in 2050 will reach 4.4~ 5.4 billion tce. It is shown in energy supply analysis that coal is China’s major energy in primary energy supply. The share of CO2 emission in the future Chinese energy system will be out of proportion to its energy consumption share because of the high persentage of coal to be consumed. It will reach about 27%. The nuclear option which would replace 30.7% of coal in the total primary energy supply will reduce the share by 9.8%. So the policy considerations on the future Chinese energy system is of great importance to the global CO2 issues. 展开更多
关键词 long-term forecast Energy demand CO2emission Climate change.
下载PDF
Long-Term Load Forecasting of Southern Governorates of Jordan Distribution Electric System 被引量:1
4
作者 Aouda A. Arfoa 《Energy and Power Engineering》 2015年第5期242-253,共12页
Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern... Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern parts of Jordan including, Ma’an, Karak and Aqaba. The available statistical data about the load of southern part of Jordan are supplied by electricity Distribution Company. Mathematical and statistical methods attempted to forecast future demand by determining trends of past results and use the trends to extrapolate the curve demand in the future. 展开更多
关键词 long-term LOAD forecasting PEAK LOAD Max demand and Least SQUARES
下载PDF
Optimal Scheme with Load Forecasting for Demand Side Management (DSM) in Residential Areas
5
作者 Mohamed AboGaleela Magdy El-Marsafawy Mohamed El-Sobki 《Energy and Power Engineering》 2013年第4期889-896,共8页
Utilities around the world have been considering Demand Side Management (DSM) in their strategic planning. The costs of constructing and operating a new capacity generation unit are increasing everyday as well as Tran... Utilities around the world have been considering Demand Side Management (DSM) in their strategic planning. The costs of constructing and operating a new capacity generation unit are increasing everyday as well as Transmission and distribution and land issues for new generation plants, which force the utilities to search for another alternatives without any additional constraints on customers comfort level or quality of delivered product. De can be defined as the selection, planning, and implementation of measures intended to have an influence on the demand or customer-side of the electric meter, either caused directly or stimulated indirectly by the utility. DSM programs are peak clipping, Valley filling, Load shifting, Load building, energy conservation and flexible load shape. The main Target of this paper is to show the relation between DSM and Load Forecasting. Moreover, it highlights on the effect of applying DSM on Forecasted demands and how this affects the planning strategies for utility companies. This target will be clearly illustrated through applying the developed algorithm in this paper on an existing residential compound in Cairo-Egypt. 展开更多
关键词 Component demand Side Management(DSM) LOAD factor(L.F.) Short term LOAD Forecatsing(STLF) long term LOAD forecasting(LTLF) Artificial Neural Network(ANN)
下载PDF
重大传染病疫情下应急医疗物资需求预测和配置研究 被引量:1
6
作者 袁瑞萍 杨阳 +2 位作者 王晓林 多靖赟 李俊韬 《安全与环境学报》 CAS CSCD 北大核心 2024年第8期3201-3209,共9页
为了科学合理地进行应急医疗物资配置,提高重大传染病疫情防控效率,根据疫情演化不同阶段的特点开展应急医疗物资需求预测和配置研究。首先,根据疫情数据特征,提出传染病模型SEIR(Susceptible Exposed Infectious Recovered)和长短期记... 为了科学合理地进行应急医疗物资配置,提高重大传染病疫情防控效率,根据疫情演化不同阶段的特点开展应急医疗物资需求预测和配置研究。首先,根据疫情数据特征,提出传染病模型SEIR(Susceptible Exposed Infectious Recovered)和长短期记忆(Long Short-Term Memory,LSTM)网络相结合的模型(SEIR-LSTM)预测各需求点的应急医疗物资需求量,该方法利用LSTM对时间序列数据良好的学习能力预测感染率,输入SEIR模型提高预测准确率。然后,根据传染病疫情演化关键阶段的特点,考虑物资配送成本、需求紧迫度和分配公平性等因素构建分阶段多目标物资配置模型。最后,以上海新冠肺炎疫情进行实例分析,结果表明,基于SEIR-LSTM的应急物资需求量预测方法准确率较高,根据分阶段配置模型求出的方案能够满足各个阶段物资分配的要求,验证了提出的模型和算法的有效性。 展开更多
关键词 公共安全 重大传染病疫情 需求预测 应急物资配置 传染病模型SEIR 长短期记忆(LSTM)
原文传递
基于多模型融合的中长期径流集成预测方法 被引量:1
7
作者 朱非林 陈嘉乙 +2 位作者 张咪 徐向荣 钟平安 《水力发电》 CAS 2024年第2期6-13,29,共9页
中长期水文预报是流域水资源规划与合理配置的重要依据。为提高中长期径流预测精度,提出了一种基于多模型融合的水库中长期径流集成预测方法。该方法将ARMA、BP、LSTM、RF和SVR等5个异质预测模型进行融合,同时采用超参数优化方法确定各... 中长期水文预报是流域水资源规划与合理配置的重要依据。为提高中长期径流预测精度,提出了一种基于多模型融合的水库中长期径流集成预测方法。该方法将ARMA、BP、LSTM、RF和SVR等5个异质预测模型进行融合,同时采用超参数优化方法确定各模型的最优参数。将其用于青海省龙羊峡水库的中长期径流预报中,结果表明,通过Stacking融合算法建立的集成预测模型相较于单一模型,取得了更高的预测精度(R2值由0.71提升至0.82)。此方法可为提升流域中长期径流预测精度提供一定参考。 展开更多
关键词 中长期径流预报 ARMA BP LSTM RF SVR 多模型融合 集成预测 Stacking融合算法 超参数寻优 龙羊峡水库
下载PDF
基于可解释机器学习的黄河源区径流分期组合预报
8
作者 黄强 尚嘉楠 +6 位作者 方伟 杨程 刘登峰 明波 沈延青 祁善胜 程龙 《人民黄河》 CAS 北大核心 2024年第9期50-59,共10页
黄河源区是黄河流域重要的产流区和我国重要的清洁能源基地,提高黄河源区径流预报准确率可为流域水资源科学调配和水风光清洁能源高效利用提供重要支撑。以黄河源区唐乃亥和玛曲水文站为研究对象,基于不同月份径流组分的差异,考虑积雪... 黄河源区是黄河流域重要的产流区和我国重要的清洁能源基地,提高黄河源区径流预报准确率可为流域水资源科学调配和水风光清洁能源高效利用提供重要支撑。以黄河源区唐乃亥和玛曲水文站为研究对象,基于不同月份径流组分的差异,考虑积雪覆盖率及融雪水当量变化,构建了中长期径流分期组合机器学习预报模型及其可解释性分析框架。研究结果表明:1)年内的径流预报时段可划分为融雪影响期(3—6月)和非融雪主导(以降雨和地下水补给为主)期(7月—次年2月);2)与传统不分期模型相比,唐乃亥站和玛曲站分期组合预报模型的纳什效率系数分别达0.897、0.835,确定系数(R2)分别达0.897、0.839,均方根误差分别降低了10%、17%,提高了径流预报准确率,通过分位数映射校正,唐乃亥站和玛曲站预报模型的R2分别进一步提升至0.926和0.850;3)基于SHAP机器学习可解释性分析框架,辨识了预报因子对径流预报结果的贡献程度,由高到低依次为降水、前一个月流量、蒸发、气温、相对湿度、融雪水当量等,发现了不同预报因子之间交互作用散点分布具有拖尾式或阶跃式的特征。 展开更多
关键词 中长期径流预报 分期组合 机器学习 可解释性 黄河源区
下载PDF
基于集合Kalman滤波的中长期径流预报
9
作者 刘源 纪昌明 +4 位作者 马皓宇 王弋 张验科 马秋梅 杨涵 《水资源保护》 EI CSCD 北大核心 2024年第1期93-99,共7页
为降低中长期径流预报的不确定性,增加水电站水库的发电效益,针对现有方法侧重于提高单一预报模型确定性预报结果的准确性以降低径流预报不确定性的问题,提出一种基于集合Kalman滤波的入库径流确定性预报方法。以旬为预见期的锦西水库... 为降低中长期径流预报的不确定性,增加水电站水库的发电效益,针对现有方法侧重于提高单一预报模型确定性预报结果的准确性以降低径流预报不确定性的问题,提出一种基于集合Kalman滤波的入库径流确定性预报方法。以旬为预见期的锦西水库实例验证结果表明:相比传统的单一预报模型和传统的信息融合预报模型,基于集合Kalman滤波的中长期径流预报可使RMSE降低4.78 m^(3)/s,合格率可提高0.56%,且更有效地降低了汛期预报的不确定性,得到了更加准确、可靠的确定性径流预报结果,可为开展流域梯级水电站优化调度提供技术支持。 展开更多
关键词 中长期径流预报 数据融合 集合KALMAN滤波 锦西水库
下载PDF
基于双重分解和双向长短时记忆网络的中长期负荷预测模型
10
作者 王继东 于俊源 孔祥玉 《电网技术》 EI CSCD 北大核心 2024年第8期3418-3426,I0121-I0126,共15页
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin... 针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。 展开更多
关键词 中长期负荷预测 二次分解 多尺度熵 奇异谱分析 双向长短时记忆网络 长序列处理
原文传递
基于改进Croston方法的多需求模式零备件预测
11
作者 杨华强 熊坚 +4 位作者 张鹏 范宜静 韩冬阳 曹蕾 夏唐斌 《科学技术与工程》 北大核心 2024年第21期8987-8995,共9页
维修备件管理是提高产线可靠性、实现降本增效的关键。针对具备间歇性与随机性特征的维修备件需求预测问题,提出了基于改进Croston方法的备件需求预测模型。依据Syntetos准则基于间断性与波动性特征将备件需求划分为4类。针对含有波动... 维修备件管理是提高产线可靠性、实现降本增效的关键。针对具备间歇性与随机性特征的维修备件需求预测问题,提出了基于改进Croston方法的备件需求预测模型。依据Syntetos准则基于间断性与波动性特征将备件需求划分为4类。针对含有波动性特征的需求,基于Croston方法主要思想将备件需求预测分解为需求发生状态预测和需求量预测两类问题,设计了集合经验模态分解(ensemble empirical mode decomposition,EEMD)-长短期记忆网络集成(long short-term memory,LSTM)预测模型。EEMD方法将剧烈波动序列分解为若干相对平稳的分量,进而采用LSTM方法对各分量进行预测。针对含有间断性特征的需求,引入信号处理技术中的信号调制技术,将需求发生状态0-1二值序列进行连续化处理。所提方法解决了备件需求波动性强、间断性大的难题,已应用于湖北中烟武汉卷烟厂,证明了方法的优越性与可行性。 展开更多
关键词 备件需求预测 多需求模式 Croston方法 集合经验模态分解 长短期记忆网络
下载PDF
基于CNN-LSTM-Attention的月生活需水预测研究
12
作者 陈星 沈紫菡 +1 位作者 许钦 蔡晶 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第5期1-6,共6页
需水预测是进行水资源配置的重要部分,对于水资源合理开发利用和社会可持续发展有重要指导意义.本文以陕西省为研究区,结合大数据分析法,提出一种基于CNN-LSTM-Attention的月生活需水预测模型.首先,通过卷积神经网络(convolutional neur... 需水预测是进行水资源配置的重要部分,对于水资源合理开发利用和社会可持续发展有重要指导意义.本文以陕西省为研究区,结合大数据分析法,提出一种基于CNN-LSTM-Attention的月生活需水预测模型.首先,通过卷积神经网络(convolutional neural networks,CNN)提取数据动态变化特征,然后利用长短期记忆(long short-term memory,LSTM)网络对提取的特征进行学习训练,最后使用注意力(attention)机制分配LSTM隐含层不同权重,预测月生活需水量并对比实际数据.结果表明,CNN-LSTM-Attention模型的相对平均误差值和决定系数(R2)分别为2.54%、0.95,满足预测精度需求,相比于LSTM模型预测精度更高.进一步证明了模型预测的合理性,可为陕西省水资源规划提供指导. 展开更多
关键词 月尺度 需水预测 卷积神经网络 长短期记忆网络 注意力机制 因子筛选
下载PDF
基于ISSA-LSTM模型的可再生能源电力需求预测
13
作者 闫晓霞 刘娴 《西安科技大学学报》 CAS 北大核心 2024年第3期604-614,共11页
为了更精准地预测未来能源结构调整方向及成效,选用ISSA-LSTM组合预测模型对中国2023-2030年可再生能源的电力需求进行预测。首先,利用Circle混沌映射改进麻雀搜索算法(SSA)以提高搜索能力以及种群多样性;然后引入长短期记忆神经网络(LS... 为了更精准地预测未来能源结构调整方向及成效,选用ISSA-LSTM组合预测模型对中国2023-2030年可再生能源的电力需求进行预测。首先,利用Circle混沌映射改进麻雀搜索算法(SSA)以提高搜索能力以及种群多样性;然后引入长短期记忆神经网络(LSTM)以有效捕捉可再生能源电力需求随机波动性和时序性;最后,通过ISSA-LSTM模型预测长期可再生能源的电力需求,验证测试集数据,并与其他传统模型进行对比。结果表明:ISSA-LSTM模型预测结果能够满足对可再生能源电力需求预测的精度要求;在未来2023-2030年可再生能源电力需求稳定,波动幅度不大,可达到全国用电量的1/3;利用Circle混沌映射改进策略能有效提升SSA寻优能力。与PSO算法相比,SSA算法寻找LSTM超参数最优解的能力更优,ISSA-LSTM模型预测可再生能源电力需求精度更高。 展开更多
关键词 混合预测模型 麻雀搜索算法 长短期记忆网络 Circle混沌映射 电力需求预测
下载PDF
基于时空图卷积网络的电动汽车充电需求预测
14
作者 耿鹏 杨豪杰 +1 位作者 师宗夏 柳艳 《交通工程》 2024年第11期37-45,共9页
为提高电动汽车充电需求预测的准确性,减少热点区域交通压力,提出一种融合图卷积网络(GCN)与长短期记忆网络(LSTM)的时空图卷积网络模型(GCN+LSTM)。该模型将充电站作为图的节点,并通过地理位置的接近程度定义节点间的连接。通过GCN迭... 为提高电动汽车充电需求预测的准确性,减少热点区域交通压力,提出一种融合图卷积网络(GCN)与长短期记忆网络(LSTM)的时空图卷积网络模型(GCN+LSTM)。该模型将充电站作为图的节点,并通过地理位置的接近程度定义节点间的连接。通过GCN迭代聚合相邻节点信息,模型能捕捉充电站之间的空间关联。同时,LSTM对充电需求的时间序列特征进行分析,利用历史数据预测未来的充电趋势。通过构建充电站间的栅格地图,模型实现了高效的数据处理和特征提取。实验结果表明,与其他传统网络模型相比,GCN+LSTM模型在7 d、30 d预测任务中,整体上均展现出更低的平均绝对误差(MAE)、均方根误差(RMSE)以及平均绝对百分比误差(MAPE),显示出更优的预测性能。 展开更多
关键词 电动汽车 充电需求 图卷积网络 长短期记忆网络 时空预测
下载PDF
安徽省生鲜农产品冷链物流需求预测研究
15
作者 徐超毅 胡望敏 《哈尔滨商业大学学报(自然科学版)》 CAS 2024年第4期485-493,共9页
生鲜农产品等冷链产品市场需求快速增长,冷链物流的供给无法满足人们的需求给生鲜农产品带来新的挑战.安徽省作为一个农产品丰富的地区,生鲜农产品的供应对于满足市场需求至关重要.收集了2001~2022年生鲜农产品产量数据,采用反向传播神... 生鲜农产品等冷链产品市场需求快速增长,冷链物流的供给无法满足人们的需求给生鲜农产品带来新的挑战.安徽省作为一个农产品丰富的地区,生鲜农产品的供应对于满足市场需求至关重要.收集了2001~2022年生鲜农产品产量数据,采用反向传播神经网络(Back Propagation Neural Network,BP神经网络)、长短时记忆(long short-term memory,LSTM)、粒子群算法优化的长短期记忆神经网络(Particle Swarm Optimization-Long Short-Term Memory,PSO-LSTM)三种模型进行训练和验证,通过三种模型的对比分析,三种模型相对误差分别为0.13%、0.06%、0.02%.结果表明,PSO-LSTM模型预测精度最高,拟合效果最好,能够有效预测未来四年安徽省生鲜农产品冷链物流需求,以应对不断增长的冷链物流需求压力. 展开更多
关键词 BP神经网络 LSTM模型 PSO-LSTM模型 生鲜农产品冷链物流 需求预测
下载PDF
基于CNN-LSTM电力消耗预测模型及系统开发
16
作者 龚立雄 钞寅康 +1 位作者 黄霄 陈佳霖 《计算机仿真》 2024年第8期77-83,共7页
有效预测电能负荷,对提高电力负荷时间序列测量准确度及合理制定用电能管理措施具有重要意义。针对传统预测模型在电能负荷预测中无法充分挖掘时间序列数据中隐藏特征的问题,基于电能数据时间序列的趋势,融合数值信息提出一种卷积神经网... 有效预测电能负荷,对提高电力负荷时间序列测量准确度及合理制定用电能管理措施具有重要意义。针对传统预测模型在电能负荷预测中无法充分挖掘时间序列数据中隐藏特征的问题,基于电能数据时间序列的趋势,融合数值信息提出一种卷积神经网络(convolutional neuralnetwork,CNN)与长期短期记忆循环神经网络(long short-term memory network,LSTM)相结合的混合多隐层CNN-LSTM电力能耗预测模型。首先,通过设定最小目标函数作为优化目标,Adam优化算法更新神经网络的权重,并对网络层和批大小进行自适应调优以确定最佳层数和批大小。其次,构建混合多隐层模型并进行隐层组合优化与讨论,确定最佳时间维度的参数,进行时间维度的特征学习进而预测下一时间序列的耗电量。然后以某公司的电力负荷数据为例进行验证,并与LSTM、CNN、RNN等模型的预测结果分析比较。结果表明上述混合多隐层模型预测准确度达98.94%,平均绝对误差(MAE)达到0.0066,均优于其他相关模型,证明以上混合预测模型在电力负荷预测精度方面具有更好的性能。基于上述理论,开发了能耗监控决策系统,实现设备状态实时监控和能耗智能预测功能,为解决传统制造业能耗需求不精确和能源库存浪费问题提供参考和指导。 展开更多
关键词 电力负荷预测 卷积神经网络 长短期记忆神经网络 混合多隐层组合模型
下载PDF
基于STE-TCN的中短期电力负荷预测
17
作者 郑晓亮 束庆宇 《重庆工商大学学报(自然科学版)》 2024年第6期59-64,共6页
目的 针对传统电力负荷预测模型对长序列预测精度低的问题,提出一种结合跳级卷积连接与时间编码网络的新型时序卷积神经网络(TCN)模型——STE-TCN模型。方法 首先对TCN模型加入跨周期的膨胀卷积通道(Skip-convolution)提取电力数据周期... 目的 针对传统电力负荷预测模型对长序列预测精度低的问题,提出一种结合跳级卷积连接与时间编码网络的新型时序卷积神经网络(TCN)模型——STE-TCN模型。方法 首先对TCN模型加入跨周期的膨胀卷积通道(Skip-convolution)提取电力数据周期信息;再进行特征融合得到Skip-TCN网络,使网络抓取周期规律,增加信息利用长度;最后设计日期编码网络(Time encoding network)捕捉生活周期和季节性特征,与Skip-TCN进行特征融合得到STE-TCN模型,实现对电力负荷数据长序列预测。结果 实验表明:在与TCN模型和传统时序网络的对比下,Skip-TCN的预测精度均有提升,在预测长度更长的测试上提升尤为明显。结论 实验结果验证了通过对更长跨度时序关系的捕捉,STE-TCN网络改进方法有效提升了对长序列电力负荷的预测精度。 展开更多
关键词 中短期负荷预测 长序列预测 时序卷积网络 周期性关系 日期编码
下载PDF
不同灌溉方式下无花果需水规律及作物需水量预报 被引量:1
18
作者 陈梦婷 王海丽 +1 位作者 王小军 罗玉峰 《节水灌溉》 北大核心 2024年第9期12-20,29,共10页
探究不同灌溉方式下无花果需水规律及作物需水量的预报对无花果生产具有重要的研究和指导意义。根据广东省水利重点科研基地2022年5月至2023年12月的无花果种植数据,分析不同灌水方式下无花果需水规律,推求作物系数曲线,结合Hargreaves-... 探究不同灌溉方式下无花果需水规律及作物需水量的预报对无花果生产具有重要的研究和指导意义。根据广东省水利重点科研基地2022年5月至2023年12月的无花果种植数据,分析不同灌水方式下无花果需水规律,推求作物系数曲线,结合Hargreaves-Samani模型和单作物系数法,基于公共天气预报进行无花果需水量预报。结果表明:不同灌水方式中沟灌的需水量最大,2023年日均需水量为2.44mm/d,其次是喷灌和地面滴灌,日均需水量分别为2.23mm/d和2.04mm/d,地下滴灌需水量最小,为1.92mm/d,5-9月为无花果需水旺盛期。采用联合国粮农组织(FAO)推荐的单作物系数法推求出试验站无花果Kc作物系数曲线,作物系数地下滴灌<地面滴灌<喷灌<沟灌。气温预报精度较高,最低气温的预报精度优于最高气温的预报精度。经过率定的Hargreaves-Samani模型具有良好的ET0预报精度,相关系数平均值可达0.86。4种灌溉方式无花果作物需水量预报精度低于ET0预报,相关系数范围为0.68~0.74。无花果作物需水量预报模型可以提供未来两周内的无花果需水量,为灌溉决策者提供信息,有利于农民提前安排水资源的分配。 展开更多
关键词 高效节水灌溉 无花果 需水规律 作物需水量预报 中长期天气预报
下载PDF
基于变量选择与Transformer模型的中长期电力负荷预测方法
19
作者 黄文琦 梁凌宇 +3 位作者 王鑫 赵翔宇 宗珂 孙凌云 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第4期483-491,500,共10页
准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权组件... 准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权组件,根据变量与预测结果的相关性,赋予变量不同的权重。设计了双层编码结构,进行时序特征提取,对注意力进行稀疏处理,通过多变量输入对未来时刻负荷进行预测。基于真实电力负荷数据的实验表明,本文模型能够提高中长期负荷预测精度和效率。 展开更多
关键词 电力时序数据 TRANSFORMER 中长期负荷预测 多变量 变量选择
下载PDF
考虑上游来水影响的中长期径流预报 被引量:1
20
作者 李世林 黄炜斌 +3 位作者 陈枭 周开喜 钟璐 曾宏 《水力发电》 CAS 2024年第5期16-20,121,共6页
雅砻江流域地面气象站点不足、分布不均,难以获得精确的流域面降雨资料,加之传统中长期径流预报模型泛化能力有限,中长期径流预报存在较大瓶颈。充分考虑流域水库间的物理联系,基于上下游水库流量变化在时空上的相似性,对1957年~2020年... 雅砻江流域地面气象站点不足、分布不均,难以获得精确的流域面降雨资料,加之传统中长期径流预报模型泛化能力有限,中长期径流预报存在较大瓶颈。充分考虑流域水库间的物理联系,基于上下游水库流量变化在时空上的相似性,对1957年~2020年锦屏一级水库和二滩水库的历史月径流数据进行主成分分析,使用BP人工神经网络、随机森林和支持向量回归3种机器学习方法建立3种径流预报模型,通过决定系数R^(2),合格率Q R以及平均相对误差MRE三项指标构成的评价体系对预测结果进行评估。结果表明,上游水库对于下游水库的入库流量具有显著影响,且3种模型在二滩水库中长期径流预报上均具有较好的预报效果(R^(2)>0.8、Q R>0.7、MRE<0.2)。随机森林模型模拟效果整体优于BP人工神经网络和支持向量回归模型,3种模型均具有较好的实用性,能为流域水资源精细化调度及科学管理提供数据基础。 展开更多
关键词 径流预报 中长期 主成分分析 BP人工神经网络 随机森林 支持向量回归 二滩水库
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部