In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access ...In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy.展开更多
Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose ...Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose a new methodol-ogy that uses hourly daily loads to predict the next year hourly loads, and hence predict the peak loads expected to be reached in the next coming year. The technique is based on implementing multivariable regression on previous year's hourly loads. Three regression models are investigated in this research: the linear, the polynomial, and the exponential power. The proposed models are applied to real loads of the Jordanian power system. Results obtained using the pro-posed methods showed that their performance is close and they outperform results obtained using the widely used ex-ponential regression technique. Moreover, peak load prediction has about 90% accuracy using the proposed method-ology. The methods are generic and simple and can be implemented to hourly loads of any power system. No extra in-formation other than the hourly loads is required.展开更多
The long-term energy demand in China and the-Chinese share in global CO2 emission are forecasted on the basis of scenarios of population growth and economy development up to 2050 proposed in view of the interaction of...The long-term energy demand in China and the-Chinese share in global CO2 emission are forecasted on the basis of scenarios of population growth and economy development up to 2050 proposed in view of the interaction of energy, economy, environment and social development. The total energy demand in 2050 will reach 4.4~ 5.4 billion tce. It is shown in energy supply analysis that coal is China’s major energy in primary energy supply. The share of CO2 emission in the future Chinese energy system will be out of proportion to its energy consumption share because of the high persentage of coal to be consumed. It will reach about 27%. The nuclear option which would replace 30.7% of coal in the total primary energy supply will reduce the share by 9.8%. So the policy considerations on the future Chinese energy system is of great importance to the global CO2 issues.展开更多
Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern...Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern parts of Jordan including, Ma’an, Karak and Aqaba. The available statistical data about the load of southern part of Jordan are supplied by electricity Distribution Company. Mathematical and statistical methods attempted to forecast future demand by determining trends of past results and use the trends to extrapolate the curve demand in the future.展开更多
Utilities around the world have been considering Demand Side Management (DSM) in their strategic planning. The costs of constructing and operating a new capacity generation unit are increasing everyday as well as Tran...Utilities around the world have been considering Demand Side Management (DSM) in their strategic planning. The costs of constructing and operating a new capacity generation unit are increasing everyday as well as Transmission and distribution and land issues for new generation plants, which force the utilities to search for another alternatives without any additional constraints on customers comfort level or quality of delivered product. De can be defined as the selection, planning, and implementation of measures intended to have an influence on the demand or customer-side of the electric meter, either caused directly or stimulated indirectly by the utility. DSM programs are peak clipping, Valley filling, Load shifting, Load building, energy conservation and flexible load shape. The main Target of this paper is to show the relation between DSM and Load Forecasting. Moreover, it highlights on the effect of applying DSM on Forecasted demands and how this affects the planning strategies for utility companies. This target will be clearly illustrated through applying the developed algorithm in this paper on an existing residential compound in Cairo-Egypt.展开更多
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin...针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。展开更多
文摘In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy.
文摘Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose a new methodol-ogy that uses hourly daily loads to predict the next year hourly loads, and hence predict the peak loads expected to be reached in the next coming year. The technique is based on implementing multivariable regression on previous year's hourly loads. Three regression models are investigated in this research: the linear, the polynomial, and the exponential power. The proposed models are applied to real loads of the Jordanian power system. Results obtained using the pro-posed methods showed that their performance is close and they outperform results obtained using the widely used ex-ponential regression technique. Moreover, peak load prediction has about 90% accuracy using the proposed method-ology. The methods are generic and simple and can be implemented to hourly loads of any power system. No extra in-formation other than the hourly loads is required.
文摘The long-term energy demand in China and the-Chinese share in global CO2 emission are forecasted on the basis of scenarios of population growth and economy development up to 2050 proposed in view of the interaction of energy, economy, environment and social development. The total energy demand in 2050 will reach 4.4~ 5.4 billion tce. It is shown in energy supply analysis that coal is China’s major energy in primary energy supply. The share of CO2 emission in the future Chinese energy system will be out of proportion to its energy consumption share because of the high persentage of coal to be consumed. It will reach about 27%. The nuclear option which would replace 30.7% of coal in the total primary energy supply will reduce the share by 9.8%. So the policy considerations on the future Chinese energy system is of great importance to the global CO2 issues.
文摘Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern parts of Jordan including, Ma’an, Karak and Aqaba. The available statistical data about the load of southern part of Jordan are supplied by electricity Distribution Company. Mathematical and statistical methods attempted to forecast future demand by determining trends of past results and use the trends to extrapolate the curve demand in the future.
文摘Utilities around the world have been considering Demand Side Management (DSM) in their strategic planning. The costs of constructing and operating a new capacity generation unit are increasing everyday as well as Transmission and distribution and land issues for new generation plants, which force the utilities to search for another alternatives without any additional constraints on customers comfort level or quality of delivered product. De can be defined as the selection, planning, and implementation of measures intended to have an influence on the demand or customer-side of the electric meter, either caused directly or stimulated indirectly by the utility. DSM programs are peak clipping, Valley filling, Load shifting, Load building, energy conservation and flexible load shape. The main Target of this paper is to show the relation between DSM and Load Forecasting. Moreover, it highlights on the effect of applying DSM on Forecasted demands and how this affects the planning strategies for utility companies. This target will be clearly illustrated through applying the developed algorithm in this paper on an existing residential compound in Cairo-Egypt.
文摘针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。